
Neurocomputing xxx (xxxx) xxx
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
A neural architecture generator for efficient search space
https://doi.org/10.1016/j.neucom.2021.10.118
0925-2312/� 2021 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: jingkun18@mails.ucas.ac.cn (K. Jing), xujg@ucas.ac.cn (J. Xu),

zzhang586@wisc.edu (Z. Zhang).

Please cite this article as: K. Jing, J. Xu and Z. Zhang, A neural architecture generator for efficient search space, Neurocomputing, https://doi.org/10
neucom.2021.10.118
Kun Jing, Jungang Xu ⇑, Zhen Zhang
School of Computer Science and Technology, University of Chinese Academy of Sciences, Huaibei Town, Huairou District, Beijing 101408, China
a r t i c l e i n f o

Article history:
Received 26 June 2021
Revised 2 September 2021
Accepted 29 October 2021
Available online xxxx
Communicated by Zidong Wang

Keywords:
Neural architecture search
Large-scale architecture space
Generative adversarial network
Neural architecture generator
Graph neural network
a b s t r a c t

Neural architecture search (NAS) has made significant progress in recent years. However, the existing
methods usually search architectures in a small-scale, well-designed architecture space, discover only
one architecture in a single search, and hardly rework, which severely limits their potential. In this paper,
we propose a novel neural architecture generator (NAG) that can efficiently sample architectures in a
large-scale architecture space. Like a generative adversarial network (GAN), our model consists of two
components: (1) a generator that can generate directed acyclic graphs (DAGs) as cells or blocks of neural
architectures and (2) a discriminator that can estimate the probability that a DAG comes from cells of real
architectures rather than the generator. Furthermore, we employ a random search with NAG (RS-NAG) to
discover the optimal architecture according to the customized requirements. Experimental results show
that the NAG can generate diverse architectures with our customized requirements multiple times after
one adversary training. Furthermore, compared with the existing methods, our RS-NAG achieves the
competitive results with 2.50% and 25.5% top-1 accuracies on two benchmark datasets – CIFAR-10 and
ImageNet.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

The design of neural architecture is the driving force of deep
learning and its applications, which requires much time and expert
knowledge. Recently, neural architecture search (NAS) has been
proposed and developed to design neural architecture automati-
cally. Much research [1–8] has shown that finding a superior archi-
tecture using reinforcement learning (RL) [1–4] and evolutionary
algorithm (EA) [5–8] is feasible in a given architecture space. Fur-
thermore, some differentiable methods [9–13], such as differen-
tiable architecture search (DARTS) [9] and neural architecture
optimization (NAO) [13], have been proved to be more efficient.

However, because these methods do not sufficiently utilize
architecture access, they have to search or optimize the architec-
tures on the manually designed subset of the whole architecture
space. Although the elaborate design of the architecture space
based on expert knowledge can significantly reduce the size of
architecture space, the reduction severely limits their potential,
i.e., they may miss better architectures that are not in the designed
subset. Besides, they are ineffective, as they can discover only one
optimal architecture in one search and need to take the more
expensive costs to search for another architecture that meets
another requirement.

To address these problems, we propose a novel neural architec-
ture generator (NAG) to efficiently sample architectures in a large-
scale architecture space. In this paper, we employ the framework
of the generative adversarial network (GAN) to train the NAG
because the quality of the generated architectures cannot be
directly measured. Since the training process involves graph gener-
ation and discrimination, we utilize the graph neural network
(GNN) to extract the spatial features of graphs for finer-grained
graph modeling, seeing Section 3.2.1 and 3.2.2 for details. With
the help of GAN and GNN, we expect the NAG to capture or learn
the distribution or network topology characteristics of these archi-
tectures that meet the given requirements. The overview of the
NAG training is briefly shown in Fig. 1, which is consistent with
the GAN training. Our model is implemented by a special GAN,
which consists of two components: 1) a generator (i.e., NAG)
mainly implemented by an improved graph recurrent neural net-
work (GraphRNN) in our proposal, which can dynamically generate
various directed acyclic graphs (DAGs, i.e., architectures) with
random-length nodes and random edges as architectures accord-
ing to noises, and 2) a discriminator implemented by a graph con-
volutional network (GCN), which can distinguish whether a DAG
comes from the NAS dataset or the NAG. If labels are introduced
in the training process, the NAG can generate DAGs with the cus-
tomized requirements. It is noted that the NAG can theoretically
.1016/j.

https://doi.org/10.1016/j.neucom.2021.10.118
mailto:jingkun18@mails.ucas.ac.cn
mailto:xujg@ucas.ac.cn
mailto:zzhang586@wisc.edu
https://doi.org/10.1016/j.neucom.2021.10.118
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom
https://doi.org/10.1016/j.neucom.2021.10.118
https://doi.org/10.1016/j.neucom.2021.10.118


Fig. 1. The overview of the NAG training. The framework is inspired by the vanilla conditional generative adversarial network. The DAGs and labels are sampled from the NAS
dataset. The sampled labels are random in the training stage and manually set in the inference stage. The NAG outputs the generated DAGs according to the noises z � pz zð Þ.

K. Jing, J. Xu and Z. Zhang Neurocomputing xxx (xxxx) xxx
generate any DAGs on the condition that the NAS dataset includes
various DAGs with different numbers of nodes and connections.
Once the NAG is trained, it can generate architectures multiple
times. Like human experts, the NAG can automatically design
architectures with the customized requirements according to prior
architecture knowledge (i.e., the NAS dataset), which is a trial and
error process. Due to adversarial training, NAG can explore a more
extensive search space with fewer permutations and combina-
tions. In other words, it can easily explore in the right and fruitful
directions. To make full use of the advantages of NAG, we expand
the original architecture space in DARTS space [9]. Furthermore,
we employ a random search with NAG (RS-NAG) to discover the
optimal architecture for image processing according to the cus-
tomized requirements.

To compare our proposed method with other NAS methods, we
build a NAS dataset on our architecture space using a one-shot
model and improved parameter sharing for the GAN training. We
report the competitive experimental results of RS-NAG on two
benchmark datasets, namely CIFAR-10 [14] and ImageNet [15].
Moreover, ablation studies and more experiments further verify
the effectiveness of the NAG.

Our contributions are as follows:

� We propose an extended architecture space and a novel NAG.
After adversarial training on the NAS dataset built on the target
dataset, the NAG can generate various architectures according
to the customized requirements. Moreover, the NAG can be
trained once and generate architectures multiple times.

� We can enable the extensible NAG to generate architectures
that meet the customized requirements by introducing other
performance indicator labels, such as inference delay, etc.
2

� We also propose two improvement techniques, i.e., the proba-
bility graph and the improved parameters sharing. The proba-
bility graph guarantees gradient flow and more robust
training. The improved parameter sharing realizes the parame-
ter sharing between cells with different numbers of nodes and
improves the efficiency of the NAS dataset building.

� Extensive experiments on the image classification task verify
the effectiveness of the NAG. RS-NAG can efficiently discover
the optimal architecture that meets the customized require-
ments. We show the architecture that achieves highly compet-
itive results with 2.50% test error on CIFAR-10 and 25.5% top-1
error on ImageNet.

2. Related work

2.1. Neural architecture search

The crucial components of the existing NAS methods consist of
search strategy and estimation strategy. The search strategies of
NAS are roughly divided into three categories, RL-based methods
[1–3,16], EA-based methods [5,7,8], and differentiable methods
[9,13,12,11,10]. Unlike RL-based [1] and EA-based methods [5] that
are conducted over a discrete and non-differentiable architecture
space, DARTS [9] relaxes the space into a continuous space. It uses
gradient information for a more efficient search. The estimation
strategies of NAS are to improve the efficiency of network estima-
tion, including brute-force, training proxy [4,8,17], performance
predictor [16,18], parameter sharing [3,9], and lightweight perfor-
mance proxy [19,20]. All existing NAS methods search for only one
architecture in an elaborately designed architecture space (e.g.,
DARTS requires a fixed number of nodes and edges). As shown in



Fig. 2. The comparison of conventional NAS frameworks with ours. The dotted box is the component where a NAS work focuses and contributes. The solid box is the
component where a NAS work does not care about. Compared with the existing NAS methods, our contribution lies in how to get an efficient search space.

K. Jing, J. Xu and Z. Zhang Neurocomputing xxx (xxxx) xxx
Fig. 2, our NAS framework also includes the NAG that can build an
efficient search space. In the efficient search space, we can get
competitive architectures using random search. Our NAS method
has three advantages over the existing one: NAG can generate var-
ious architectures with different customized requirements instead
of searching for the optimal architecture; RS-NAG can search for
the optimal architecture from the efficient search space generated
by NAG; for the architecture space, the number of nodes and edges
in each DAG (cell) can be variable. To our knowledge, our work
may be the first attempt to introduce a neural architecture gener-
ator to get the customized architectures, which can build an effi-
cient search space.

2.2. Generative adversarial network

GAN is a significant model for image generation. In the GAN
[21], the generator and discriminator are trained alternately to
realize adversarial learning, where the process is a zero-sum game
and can converge to Nash equilibrium. In order to remedy the two
defects of the low quality of the generated data and the instability
of the training process, least-squares GAN (LSGAN) [22] replaces
the cross-entropy loss with the least square loss. Besides, there
are many works [23–26] to improve the GAN training. Further-
more, conditional GAN (CGAN) [27] introduces some labels to
guide the generation process and enables the generator to output
data in the specified style. For the efficient search space, we obtain
a NAG by adversarial training in our proposed special GAN, which
can capture the distributions of the architectures that meet the dif-
ferent customized requirements and can efficiently explore the
architecture space.

2.3. Graph neural network

GNN [28] is a deep neural network that propagates messages
along the edges between the nodes on graphs to deal with graph
problems. GCN [29] is one of the most significant layer-wise
GNN models, which can extract spatial features of graphs. Graph
generation is one of the most concerned graph problems.
GraphRNN [30] can dynamically generate a graph in an autoregres-
sive way. A neural architecture is viewed as a DAG in our work, and
we utilize GNN to tackle graph information. GCN is used as the dis-
criminator to obtain graph features. The decoder of VS-GAE [31]
inspires our generator. The introduction of GNN makes the archi-
tecture properties modeled better on a fine-grained level.

3. Neural architecture generator

In theory, our method can be used for various tasks, e.g., image
processing and natural language processing. In this paper, we only
focus on the image classification task, which is the basic task of
image processing.
3

3.1. Large-scale architecture space

3.1.1. Macro architecture
Like the previous works [3,9,13], our architecture space is also

based on cells. We stack each normal cell Ncell times, followed by
a reduction cell, in which the image height and width are halved
via max-pooling, and the number of channels is doubled. We
repeat this pattern Nstack times, followed by a global average pool-
ing and a final dense softmax layer. The initial layer of the model is
a stem consisting of one 3� 3 convolution with 128 output chan-
nels. The macro architecture is shown in Fig. 3a.
3.1.2. Micro architecture
To facilitate the use of GNN, each cell, also named micro archi-

tecture, is considered as a DAG, in which nodes represent any can-
didate operations and edges represent tensor flows. In the DAG,
except for input and output nodes, there are other candidate oper-
ation types of nodes, e.g., separable convolutions, dilated separable
convolutions, and pooling operations. An example of a micro archi-
tecture is shown in Fig. 3b. The graph with five nodes is described
by a 5� 5 adjacency matrix and a 5� 7 feature matrix. The ele-
ment at i-th row, j-th column of the adjacency matrix indicates a
directed edge from source node i to target node j. In addition to
the first operation ‘‘in” and the last operation ‘‘out”, other opera-
tions are one of five candidate operations according to their one-
hot vectors in the feature matrix. To avoid human bias and explore
more architectures, we expand the micro architecture space to the
space that includes all possible DAGs with less than N nodes.

As a result, the size of the architecture space increases from

n2�nnode
op �Qnnodeþ1

i¼2
i
2

� �
to n0n0nodeop � 2 n0nodeþ1ð Þ n0nodeþ2ð Þ=2, where nop;n0op

are the number of the candidate operations of the original and
our space, and nnode;n0node are the number of intermediate nodes
in the DAGs. Normally, n0node ¼ 2� nnode and n0op ¼ nop.
3.2. Components

As shown in Fig. 1, we use the framework of the vanilla CGAN
to control the NAG to generate the architecture under certain con-
ditions, where there are two significant components: a generator
and a discriminator. The generator (i.e. NAG) is mainly imple-
mented by an improved GraphRNN, which can dynamically gener-
ate various DAGs (i.e., architectures) with random-length nodes
and random edges. The discriminator is implemented by a GCN,
which can distinguish whether a DAG comes from the NAS dataset
or the NAG.
3.2.1. Generator
We expect that the NAG can take labels of performance indica-

tors of interest and a noise z sampled from noise prior distribution



Fig. 3. The architecture space of NAG. (left) The macro architecture of the discovered architecture. (top-right) An example cell. (bottom-right) The matrix representation of
the top-right cell.

K. Jing, J. Xu and Z. Zhang Neurocomputing xxx (xxxx) xxx
pz zð Þ as input and map them into a DAG G with n nodes, which is
formulated as

G ¼ f generator cð Þ; c ¼ z; E1 l1½ �; E2 l2½ �; � � �ð Þ; z � pz zð Þ; ð1Þ

where Ei denotes the embedding layer of the i-th label li.
Inspired by the variational-sequential graph autoencoder [31],

we use an improved GraphRNN to construct the NAG, which
sequentially generates new nodes with a determined candidate
operation and new input edges of the new node. The NAG consists
of four modules, i.e., PropGraph, AddNode, InitNode, and
AddEdge, which are illustrated in Fig. 4. Starting from the graph
with only one input node, we repeat these four modules until
one output node is generated or the number of nodes is up to
the maximum we set.

The PropGraph module propagates messages on the current

graph G tð Þ, updates the current embeddings H tð Þ of the existing

nodes, and aggregates the updated node embeddings H tð Þ
updated for

the graph embedding hG tð Þ . The graph embedding hG tð Þ is a current
graph state used to generate new nodes and edges. This is formu-
lated as

hG tð Þ ;H tð Þ
updated ¼ f prop H tð Þ;G tð Þ

� �
: ð2Þ

The function f prop can be specifically written as

H tð Þ
updated;v ¼ U tð Þ H tð Þ

v ;msgv
� �

; v 2 G tð Þ; msgv

¼ A M tð Þ H tð Þ
v ;H tð Þ

u

� �� �
; u 2 N vð Þ; hG tð Þ

¼ AG H tð Þ
updated

� �
; ð3Þ

where A and AG are aggregation functions for messages and the
graph embedding hG tð Þ respectively; N vð Þ denotes the neighbours

of node v ; M tð Þ is a function for messages between nodes; U tð Þ is
an update function. It is noted that directed edges of DAGs are
regarded as bi-directed edges during message propagation, which
means that message propagation is bi-directed.
4

According to the state hG tð Þ of the original graph, and the con-
catenation c of the noise and the label embeddings, the AddNode
module determines the type of the candidate operation of a new
node,

Pnodetþ1
¼ softmax f addNode c;hG tð Þ

� �� �
; ð4Þ

where Pnodetþ1 denotes the probability distribution for candidate
operations of the t þ 1ð Þ-th node that cannot be an input node.

The goal of the InitNode module is to initialize the embedding
of the new node. Specifically,

htþ1 ¼ f initNode c;hG tð Þ ; Enode argmax Pnodetþ1

� �� 	� �
; ð5Þ

where the inputs include the concatenation c, the state hG tð Þ of the
graph, and the embedding Enode argmax Pnodetþ1

� �� 	
of the t þ 1ð Þ-th

node. Then, the node embeddings H tþ1ð Þ ¼ H tð Þ
updated;htþ1

� �
of the

graph in next time step are obtained.
After a new node is created, the AddEdge module determines

which edges between old and new nodes are selected, which

depends on the embeddings hv 2 H tð Þ
updated of the old node, the

embeddings htþ1 of the new node, the graph state hG tð Þ , and the con-
catenation c.

Pedgestþ1 ;v ¼ r f addEdge hv ;htþ1; c;hG tð Þ
� �� �

; ð6Þ
where r is the sigmoid function; the edge v ! t þ 1ð Þ is added to
the graph if the probability Pedgestþ1 ;v of the edge v ! t þ 1ð Þ is
greater than 0.5.

Finally, the new graph G tþ1ð Þ is created according to the old

graph G tð Þ; Pnodetþ1 , and Pedgestþ1
.

3.2.2. Discriminator
The discriminator aims to estimate the probability of a graph

coming from the real data, i.e., the NAS dataset. As shown in
Fig. 4, the discriminator takes a graph and performance indicator
labels of interest and then outputs a Bernoulli distribution.

To utilize graph information better, we use an L-layers GCN to
extract graph embedding. Then, the last dense layers are used to



Fig. 4. The illustration of a single iteration of the graph generation process (left) and graph discrimination process (right). The generator generates the architecture (DAG)
according to the random noise z and the input labels through PropGraph, AddNode, InitNode, and AddEdgemodules. The discriminator takes the architecture (DAG) and the
labels as input, encodes the architecture, and makes a binary classification to forecast whether they match or not.

K. Jing, J. Xu and Z. Zhang Neurocomputing xxx (xxxx) xxx
map the embedding of a graph and its labels to the Bernoulli distri-
bution that indicates whether it is real data.

ŷ ¼ f discriminator Gð Þ ¼ f MLP hG; E1 l1½ �; E2 l2½ �; � � �ð Þ; hG ¼ AG H Lð Þ
� �

; ð7Þ

H lþ1ð Þ ¼ ReLU bAH tð ÞW lð Þ
� �

; bA ¼ eD�1
2eA eD�1

2; ð8Þ
H 0ð Þ
v ¼ Enode argmax Pnodevð Þ½ �; ð9Þ

where eA ¼ Aþ AT þ I means bi-directed message propagation in
GCN; A is an adjacency matrix of the input graph G; I is an identity

matrix and eDii ¼
P

j
eAij is a degree matrix; W lð Þ is the trainable

parameters of l-th layer of GCN; argmax Pnodevð Þ is a candidate oper-
ation of node v. It is noted that the embedding layers Enode; Ei and the
graph aggregation function AG are different from those in the NAG.

3.3. NAS Dataset Building with Improved Parameter Sharing

As shown in Fig. 1, the NAS dataset is the key to training the
NAG. A simple way to obtain NAS datasets is to build it directly
from the NAS benchmarks [32–34] or the NAS works that report
architectures and their performance indicators. Another way is to
build the NAS dataset on the target dataset. We randomly sample
some architectures in our proposed architecture space and then
train and evaluate them on the target dataset to acquire the values
of a set of performance indicators (e.g., accuracy, number of param-
eters, FLOPs) that we care about.

Unfortunately, the training and evaluation of the latter are
incredibly time-consuming, which causes a bottleneck. Recently,
many studies [3,13,9] have demonstrated that parameter sharing
can significantly reduce the computational complexity of evaluat-
ing child architectures. Following NAO [13], we train and evaluate
each sampled child architecture in a one-shot agent model with
parameter sharing. However, parameter sharing between child
models with different numbers of nodes is difficult. To solve this
problem, we propose an improved parameter-sharing method with
a simple minimum priority principle, i.e., a child model with n
nodes inherits the parameters of the first n nodes in the parent
one-shot network. Our method is based on the prior knowledge
that the same first n nodes of different architectures tend to have
consistent outputs. In this way, we can get a look-up table, each
of whose items is composed of architecture and the values of its
several performance indicators.

Then, we put several performance indicator labels on each
architecture in the NAS dataset according to relative performance
indicators rankings instead of by exact performance values. For
5

example, all architectures in the NAS dataset are ranked according
to their accuracies from high to low for the accuracy label. More-
over, the first, second, and last 1/3 architectures are labeled as
high-accuracy, middle-accuracy, and low-accuracy architectures.
Given the architectures, the relative rankings of the performance
indicators that only depend on the architecture (e.g., number of
parameters, FLOPs) are definite. Many NAS studies [13,35] have
proven that the relative ranking of the accuracy of the child archi-
tectures in the one-shot model and the real architectures tend to
be positively correlated. Finally, we obtain the NAS dataset, each
of whose items is composed of architecture and its multiple perfor-
mance labels.
3.4. Training and inference

To make the training more stable, we empirically use the least
square loss function like LSGAN [22], where a ¼ 0 and b ¼ c ¼ 1
(i.e., the 0–1 binary coding scheme). Considering the introduction
of labels that improve the training, we calculate the stochastic gra-
dients of discriminator and generator, respectively

5hD

1
2m

Xm
i¼1

D a ið Þjla ið Þ
� �� 1

� �2 þ 1
2m

Xm
i¼1

D G z ið Þjlz ið Þ
� �jlz ið Þ

� �� �2" #
; ð10Þ

5hG

1
2m

Xm
i¼1

D G z ið Þjlz ið Þ
� �jlz ið Þ

� �� 1
� �2

; ð11Þ

where a ið Þ is a architecture sampled from NAS dataset; la ið Þ denotes
the label of the architecture a ið Þ; z ið Þ is a noise sampled from noise
prior distribution pz zð Þ; lz ið Þ is a random label of z ið Þ. The first term
attempts to make the discriminator distinguish the real and gener-
ated architectures as much as possible. The second term tries to
make the generator cheat the discriminator. The optimizations of
these two gradients are executed alternately.

After convergence of the training, the NAG learnes the mapping
from latent space to architecture space. Given an expected label
and some latent space samples, we can obtain different neural
architectures with the customized requirements. For example,
we set high-accuracy and low-FLOPs as the input label, and then
the NAG can generate different architectures with high accuracy
and low delay. To make the architectures meet the customized
requirements more strictly, we evaluate a few randomly sampled
architectures and pick up the top-Nneed architectures.

The detailed algorithm is shown in Algorithm 1.



K. Jing, J. Xu and Z. Zhang Neurocomputing xxx (xxxx) xxx
Algorithm1:Random search with Neural Architecture
Generation.
Input: Number of performance indicators of interest Nf ,
Number of sampled architectures Ns, Number of
architecture needed Nneed.� �

Build NAS Dataset D ¼ a; l 1ð Þ

a ; � � � ; l Nfð Þ
a in the way

described in Section 3.3, where a is an architecture in
the randomly sampled architecture pool A and the

indicator label L ið Þ
a is i-th indicators label of

architecture a.

while not converge do 
 �

Sample minibatch of m noises z ið Þ and labels lz ið Þf g

by random sampling. 
 �

Sample minibatch of m archs a ið Þ and labels la ið Þf g

from NAS dataset D.

Update discriminator using Formula 10.
 �

Sample minibatch of m noises z ið Þ and labels lz ið Þf g

by random sampling.

Update generator using Formula 11.
end while

Randomly sample Ns architectures with expected
labels from generator G. Train them from scratch and
evaluate them to obtain the values of indicators.
Output: Top-Nneed architectures that meet the
customized requirements.
3.5. Gradient flow from discriminator to generator using probability
graph

During the training of our model, the generator is updated by

Formula 11. However, the generated DAG G z ið Þjl ið Þ
� �

is discrete,

which breaks the gradient flow from the discriminator to the gen-
erator. Meanwhile, the process of looking up the embedding table
for node embedding is non-differentiable. According to the above
observations, we propose a probability graph trick to ensure that
the gradient flows from the discriminator to the generator. During
the training, the generator generates continuous probability values
of nodes and edges, which avoids the discrete representation of
graphs. Meanwhile, we replace the embedding layer in Formula 9
with a linear transformation,

H 0ð Þ
v ¼ Pnodev �Wembedding; ð12Þ

where Pnodev is obtained by Formula 4, andWembedding is the weight of
the embedding layer. Furthermore, the element Aij of the adjacency
matrix in Formula 8 denotes the probability of the edge between
node i and node j. Besides, this improvement is also conducive to
the robust adversarial training of NAG in two aspects. Specifically,
this improvement introduces noises into the probability values of
generator outputs. The noises can make the model more robust,
which is proved by the previous GAN work [36]. This improvement
also prevents the sparse gradients that are produced when NAG is
trained without the probability graph trick and disturbs the train-
ing. In Section 4.4, the ablation study demonstrates the effective-
ness of the trick of probability graph.

4. Experiments

In this section, we conduct RS-NAG experiments on two image
classification benchmark datasets – CIFAR-10 [14] and ImageNet
6

[15], respectively (searching on CIFAR-10 and evaluating on these
two datasets). Because of the different architecture representations
from previous works [1,13], we adopt the architecture space simi-
lar to those works as possible for a fair comparison. Finally, we per-
form a series of ablation studies. In the supplementary, we conduct
and discuss more experiments on NAS-Bench-101 for verifying
NAG.

4.1. Implementation details

4.1.1. Architecture space
We use five types of candidate operations in our space, includ-

ing identity, 3� 3 separable convolution, 5� 5 separable convolu-
tion, 3� 3 average pooling, and 3� 3 max pooling. For a fair
comparison with the existing methods, the maximum number N
of nodes in each cell is 10, which is similar to other existing meth-
ods that have two branches in each node and a total of five nodes.
We stack normal cells Ncell ¼ 6 times in each stage and still repeat
the stage Nstack ¼ 3 times.

4.1.2. NAS dataset
Considering the cost of training and the convergence of the

child architectures, we empirically set the same number (i.e.,
4000) of the sampled architectures as NAO [13]. To build a NAS
dataset on CIFAR-10, we trained 4000 sampled architectures in a
one-shot model with improved parameter sharing. To accelerate
the NAS dataset building, we train each child model of the one-
shot model with three layers of cells in each stack and 20 channels.
We randomly choose 5000 images from the training set as the val-
idation set. Standard data pre-processing and augmentation, such
as whitening, randomly cropping 32� 32 patches from unsampled
images of size 40� 40, and randomly and horizontally flipping
images, are applied to the original training set. The label smoothing
of 0.1 is also used. The one-shot model is trained using SGD with a
momentum of 0.9, where the arrangement of learning rate follows
a single period cosine schedule with lmax ¼ 0:025. We apply a
stochastic drop-connection with a keep rate of 0.9 on each path
and an l2 weight decay of 3e-4 for regularization. All the models
are trained with the batch size of 96 and 150 epochs. The settings
are the same as NAO [13]. The NAS dataset building takes less than
1 GPU day on a single NVIDIA V100 GPU card.

4.1.3. Accuracy-optimal search on CIFAR-10
Firstly, we conduct an accuracy-optimal search on CIFAR-10.

After the adversarial training, we sample 10 architectures from
the NAG and evaluate them following the setting of the NAS data-
set building to get the top-1 architecture for high accuracy on the
validation set. The settings of training NAG are as follows. The sizes
of node embedding and graph embedding are set to 250 and 56 for
generator and discriminator, respectively. The sizes of label
embedding and noise are set to 10 and 100, respectively. To train
NAG, we optimize the discriminator D and generator G alternately
(update D one step, and then update G one step) using Adam opti-
mizer for 200 epochs with the batch size of 64, the learning rate of
0.0002, and the dropout rate of 0.5. We flip the real and fake labels
[21] to avoid early gradient vanishing of the generator.

4.1.4. Pareto-optimal front search on CIFAR-10
The accuracy-optimal search is a particular case of the Pareto-

optimal front search, in which we only care about the validation
accuracy. NAG can also generate some architectures with different
numbers of parameters. Furthermore, we conduct a Pareto-optimal
front search on CIFAR-10. Except for a newly added label of the
number of parameters, other settings are the same as the
accuracy-optimal search on CIFAR-10. We randomly sample three



K. Jing, J. Xu and Z. Zhang Neurocomputing xxx (xxxx) xxx
architectures from the NAG and report the best one. The settings of
architecture evaluation are exactly the same as those of the
accuracy-optimal search on CIFAR-10. Another approach to gaining
a model with high accuracy is to combine three architectures with
the label of few parameters and high accuracy into an ensemble
model by hard voting.
4.2. Results on CIFAR-10

The normal and reduction cells of the best architecture we dis-
covered on CIFAR-10 are shown in Fig. 5. We train the discovered
model (6 layers of cells each stack and 36 channels) with 600
epochs from scratch on CIFAR-10. We apply stochastic drop-
connection with a keep rate of 0.8 and dropout layer with a keep
rate of 0.6. Other settings are the same as the NAS dataset building.

The results on CIFAR-10 are shown in Table 1. Compared with
architectures discovered by other methods, RS-NAG can discover
a competitive architecture with 2.50% test error in 10 sampled
architectures by the accuracy-optimal search. As can be seen,
according to the customized requirements, NAG can also design
architectures with different numbers of parameters and acceptable
accuracy. Among them, the architectures with a medium number
of parameters perform high accuracy, consistent with SNAS [11].
The reason may be that the same hyper-parameters of training net-
works are used for models with different sizes, which results in
their under-fitting or over-fitting. It is worth noting that the results
of the accuracy-optimal and Pareto-optimal front search are not
comparable because of their different numbers Ns of the sampled
architectures. The former samples ten architectures, while the lat-
ter samples three architectures. Besides, the ensemble model does
not perform as well as expected. The experimental results prove
that our RS-NAG method can discover competitive architectures
in the efficient search space built by our NAG.
4.3. Transferring the discovered architecture to ImageNet

Furthermore, we transfer the architecture discovered on CIFAR-
10 to ImageNet. We follow the same training settings used in the
related work [13]. All results are listed in Table 2. The experimental
results show that the discovered architecture on CIFAR-10 is
indeed transferable to more complicated tasks, which is superior
to or close to manually designed networks and is third only to
PC-DARTS and P-DARTS.
4.4. Ablation study

We use the same settings used in the experiments on CIFAR-10
for ablation studies on NAS-Bench-101. The experimental results of
all ablation studies are shown in Fig. 6.
4.4.1. The improvement of probability graph
To empirically prove the improvement of the probability graph,

we compare it with a simple engineering trick1. Differing from the
normal convergence of loss of NAG (marked with violet solid line),
the discriminator loss of NAG without the probability graph (marked
with blue solid line) converges to 0, and its generator loss does not
converge (i.e., its generator learns nothings from real distribution).
This result demonstrates that the improvement of the probability
graph is beneficial to the training convergence.
1 The trick y hard� y soft:detachðÞ þ y soft is utilized in the Pytorch library. It
achieves two effects: it makes the output value exactly one-hot (since we add and
then subtract y soft value); it makes the gradient equal to y soft gradient (since we
strip all other gradients)

7

4.4.2. The improvement of label flipping
Observing that the gradient of the generator tends to disappear

in the early stage, we explore the improvement of label flipping by
ablation study. For NAG without the label flipping (marked with
orange solid line), its loss begins to converge after an early diver-
gence and a hop, which confirms our observation. Thus, label flip-
ping can improve the early learning ability and benefit from its loss
convergence.

4.4.3. The choice of loss function
The choice of the loss function is significant for the training of

NAG. As can be seen, in NAG, mean square error (MSE) loss
(marked with violet solid line) performs better than binary cross-
entropy (BCE) loss (marked with green solid line). Furthermore,
Wasserstein distance loss is also verified to perform worse because
it is challenging to use regularization methods such as gradient
penalty.

4.4.4. The choice of aggregation method
We consider two aggregation methods, including mean

(marked with red solid line) and weighted mean (marked with vio-
let solid line). The fractions in the weighted mean are adjusted by a
linear layer combined with a gating layer. As can be seen, the
weighted-mean aggregation method can effectively reduce
variance.

4.5. More experiments on NAS-Bench-101

To verify the performance of our proposed NAG, we conduct
two more experiments (i.e., accuracy-optimal search and Pareto-
optimal front search) on NAS-Bench-101 [32].

4.5.1. Accuracy-optimal search
Architecture space. The architecture space is the same as described
in Section 3.1, which is compatible with the space of NAS-Bench-
101. The difference is that we just need to take a normal cell into
account. The maximum node number N in DAG is 7. We stack each
normal cell Ncell ¼ 3 times and repeat the stage Nstack ¼ 3 times.
There are three candidate operations: 3� 3 convolution, 1� 1 con-
volution, and 3� 3 max-pooling.

NAS dataset. To verify our method with minimum cost, we build
the NAS dataset by looking up NAS-Bench-101 dataset instead of
training and evaluating the sampled architectures. In this experi-
ment, only 1% of the NAS-Bench-101 architectures are sampled
for training the NAG. According to the validation accuracy, these
architectures are divided into three categories: low, medium, and
high accuracy. The settings are exactly the same as the accuracy-
optimal search on CIFAR-10.

Results. Fig. 7a shows the accuracies of 300 architectures (100 for
each category) that are sampled by the trained NAG and not in
NAS-Bench-101. We train and evaluate these generated architec-
tures following the NAS-Bench-101 [32]. As can be seen, the accu-
racies of these architectures vary with different labels. Compared
with Fig. 7a and Fig. 7b, the distributions of architectures from
the NAG and NAS-Bench-101 are consistent. The above results
demonstrate that the NAG can learn the real data distribution of
architecture space from samples and generate the architectures
that we have never seen before. Furthermore, we take 100 sampled
architectures from the NAG using the high accuracy label and com-
pare them with three standard NAS baselines. As shown in Table 3,
experimental results demonstrate that RS-NAG outperforms three
standard NAS baselines and has about 40 times sampling efficiency
than random search. Compared with Table 1 and 2, NAG performs
better in NAS-Bench-101 search space than in open-domain search



Fig. 5. The cell of the best architecture we discover. Clearly, the normal cell and reduction cell are different from previous NAS architectures: 1) the number of nodes in the
two types of cells is different; 2) our discovered normal cell is more complex, deeper, and wider.

Table 1
The comparison of different CNN models on CIFAR-10. y The cost of RS-NAG is the total cost of training the NAG and random search, not including the cost of building NAS
datasets. We run the accuracy-optimal experiment three times and report the average error and standard deviation. It is worth noting that the accuracy-optimal search and
Pareto-optimal front search are not comparable because of their different numbers Ns of the sampled architectures. The former samples ten architectures, while the latter samples
three architectures.

Architecture Test Error (%) Params (M) Ns Search Cost (GPU days)

NASNet-A + cutout [4] 2.65 3.3 20000 1800
AmoebaNet-A + cutout [8] 3.34 3.2 20000 3150
AmoebaNet-B + cutout [8] 2.55 2.8 27000 3150

PNASNet-5 [16] 3.41 3.2 1160 1160
NAONet-WS + cutout [13] 2.93 2.5 4000 0.3

ENAS + cutout [3] 2.89 4.6 – 0.45
DARTS(second order)+cutout [9] 2.76 3.3 – 4

SNAS(mild constraint)+cutout [11] 2.98 2.9 – 1.5
GDAS + cutout [12] 2.93 3.4 – 0.21

BayesNAS(lambda = 0.005)+cutout [37] 2.81 3.4 – 0.2
P-DARTS + cutout [38] 2.50 3.4 – 0.3
EPNAS + cutout [39] 2.79 4.3 600 8

PC-DARTS + cutout [40] 2.57 3.6 – 0.1

RS-NAG(high acc)+cutout 2.50 ± 0.02 4.2 ± 0.2 10 1y

RS-NAG(few params, high acc)+cutout 3.38 1.1 3 1y

RS-NAG(medium params, high acc)+cutout 2.66 3.0 3 1y

RS-NAG(large params, high acc)+cutout 3.05 4.1 3 1y

RS-NAG(ensemble model)+cutout 3.17 4.5 3 1y

Table 2
The comparison of different CNN models on ImageNet. All architectures are
transferred from CIFAR-10 architectures. We only transfer their architectures rather
than their weights and then train them on the Imagenet.

Test Error (%)

Architecture Top-1 Top-5 Params (M)

MobileNet [41] 29.4 10.5 4.2
ShuffleNet [42] 26.3 10.2 �5

MobileNet-V2 [43] 25.3 – 6.9
ShuffleNet-V2 [44] 25.1 – 7.4

NASNet-A [4] 26.0 8.4 5.3
NASNet-B [4] 27.2 8.7 5.3
NASNet-C [4] 27.5 9.0 4.9

AmoebaNet-A [8] 25.5 8 5.1
AmoebaNet-B [8] 26.0 8.5 5.3
PNASNet-5 [16] 25.8 8.1 5.1
NAONet [13] 25.7 8.2 11.35

DARTS(second order) [9] 26.7 8.7 4.7
SNAS(mild constraint) [11] 27.3 9.2 4.3

PC-DARTS [40] 25.1 7.8 5.3
P-DARTS [38] 24.4 7.4 4.9

RS-NAG(high acc) 25.5 7.8 5.0

K. Jing, J. Xu and Z. Zhang Neurocomputing xxx (xxxx) xxx

8

space, which is because the open-domain search space is much lar-
ger than NAS-Bench-101 search space.

4.5.2. Pareto-optimal front search
Architecture space. The architecture space is the exact implementa-
tion used in Section 4.5.1.

NAS dataset. We use the same NAS dataset used in Section 4.5.1. In
this section, we focus on the Pareto-optimal front search. Most set-
tings are the same as described in Section 4.5.1. The difference is
that the number of parameters is also considered as a performance
indicator of interest. In detail, these architectures also fall into nine
categories according to a few, medium, large number of parame-
ters, and low, medium, high accuracy.

Results. As shown in Fig. 8, 900 architectures (100 for each cate-
gory, a total of 9 categories) are sampled from the NAG. In
Fig. 8a, there are three types of architectures: architectures with
a few number of parameters marked with asterisks, architectures
with a medium number of parameters marked with crosses, and



Fig. 6. The ablation studies of our improvements and choices. According to the training loss, the training of NAG (violet line) converges and is the most robust. (Color version
for best viewing).

Fig. 7. The comparison of the architecture distribution of NAG and NAS-Bench-101. (a) The architecture distribution captured by our generator; (b) The real architecture
distribution of NAS-Bench-101.

Table 3
The comparison of RS-NAG and three standard NAS baselines on NAS-Bench-101. We
run each algorithm independently three times.

Method Test Error(%) Ns

NAS-Bench-101 5.68 423624
Sampled 1% architectures 6.02 ± 0.02 4236

Random Search 6.44 ± 0.25 100
Regularized Evolution 6.28 ± 0.20 100
Reinforcement Learning 6.17 ± 0.15 100

RS-NAG 5.98 ± 0.06 100

K. Jing, J. Xu and Z. Zhang Neurocomputing xxx (xxxx) xxx

9

architectures with a large number of parameters marked with dots.
Similarly, in Fig. 8b, asterisks, crosses, and dots represent three dif-
ferent architectures with low, medium, and high test accuracy,
respectively. As can be seen, the NAG can capture the distribution
of architectures with different indicator labels.

5. Conclusion

We propose a novel neural architecture generator, which can
generate various architectures that meet the customized require-
ments in our proposed large-scale architecture space. After adver-



Fig. 8. The architecture distribution of Pareto-optimal front search on NAS-Bench-101. (a) The distribution of architectures with different labels of the number of parameters.
The distribution of architectures with different labels of accuracy.

K. Jing, J. Xu and Z. Zhang Neurocomputing xxx (xxxx) xxx
sarial training, our NAG can take advantage of GNN to extract
graph information for modeling the architecture properties on a
fine-grained level. And our NAG can capture the distribution of
architectures with different requirements and efficiently explore
those architectures in the architecture space. Experimental results
on NAS-Bench-101, CIFAR-10, and ImageNet demonstrate that our
NAG can generate diverse architectures according to the cus-
tomized requirements. As a result, our RS-NAG can efficiently dis-
cover the competitive architectures in the larger architecture
space, which can be transferable to more complicated tasks.

As shown in Table 1 and Table 2, although RS-NAG does not out-
perform the state-of-the-art NAS method on CIFAR-10 and Ima-
geNet dataset, it reaches the competitive performance. In Table 3,
we argue that NAG performs better in small search space, but there
are still deficiencies in large search space, which is the direction of
improvement in the future. Besides, like the existing NAS methods,
NAG can also work for different tasks, not just image recognition.
We expect our work to be followed and lead to breakthrough inno-
vations in the field of neural architecture generation. In future, first,
we would like to try other generating methods to improve the per-
formance of the NAG in large search space, such as using a varia-
tional graph auto-encoder. Second, we would like to apply other
varieties of GAN or GNN to generate better architectures. Finally,
the efficiency of the NAS dataset building needs to be improved.
CRediT authorship contribution statement

Kun Jing: Conceptualization, Methodology, Software, Writing -
original draft. Jungang Xu: Investigation, Writing - review & edit-
ing, Supervision. Zhen Zhang: Writing - review & editing,
Validation.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
10
References

[1] B. Zoph, Q.V. Le, Neural architecture search with reinforcement learning, in:
Proc. ICLR’17, Toulon, France, 2017.

[2] B. Baker, O. Gupta, N. Naik, R. Raskar, Designing neural network architectures
using reinforcement learning, in: Proc. ICLR’17, Toulon, France, 2017.

[3] H. Pham, M.Y. Guan, B. Zoph, Q.V. Le, J. Dean, Efficient neural architecture
search via parameter sharing, in: Proc. ICML’18, Stockholm, Sweden, 2018, pp.
4092–4101.

[4] B. Zoph, V. Vasudevan, J. Shlens, Q.V. Le, Learning transferable architectures for
scalable image recognition, in: Proc. IEEE CVPR’18, Salt Lake City, UT, USA,
2018, pp. 8697–8710.

[5] L. Xie, A.L. Yuille, Genetic CNN, in: Proc. IEEE ICCV’17, Venice, Italy, 2017, pp.
1388–1397.

[6] E. Real, S. Moore, A. Selle, S. Saxena, Y.L. Suematsu, J. Tan, Q.V. Le, A. Kurakin,
Large-scale evolution of image classifiers, in: Proc. ICML’17, Sydney, NSW,
Australia, 2017, pp. 2902–2911.

[7] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, K. Kavukcuoglu, Hierarchical
representations for efficient architecture search, in: Proc. ICLR’18, Vancouver,
BC, Canada, 2018.

[8] E. Real, A. Aggarwal, Y. Huang, Q.V. Le, Regularized evolution for image
classifier architecture search, in: Proc. AAAI’19, Honolulu, Hawaii, USA, 2019,
pp. 4780–4789.

[9] H. Liu, K. Simonyan, Y. Yang, DARTS: differentiable architecture search, in:
Proc. ICLR’19, New Orleans, LA, USA, 2019.

[10] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda, Y. Jia, K.
Keutzer, Fbnet: Hardware-aware efficient convnet design via differentiable
neural architecture search, in: Proc. IEEE CVPR’19, Long Beach, CA, USA, 2019.

[11] S. Xie, H. Zheng, C. Liu, L. Lin, SNAS: stochastic neural architecture search, in:
Proc. ICLR’19, New Orleans, LA, USA, 2019.

[12] X. Dong, Y. Yang, Searching for a robust neural architecture in four GPU hours,
in: Proc. IEEE CVPR’19, Long Beach, CA, USA, 2019.

[13] R. Luo, F. Tian, T. Qin, E. Chen, T. Liu, Neural architecture optimization, in: Proc.
NeurIPS’18, Montréal, Canada, 2018.

[14] A. Krizhevsky, V. Nair, G. Hinton, Learning multiple layers of features from tiny
images, Tech. rep. (2009).

[15] J. Deng, W. Dong, R. Socher, L. Li, K. Li, F. Li, Imagenet: A large-scale hierarchical
image database, in: Proc. IEEE CVPR’09, Miami, Florida, USA, 2009, pp. 248–
255.

[16] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L. Li, L. Fei-Fei, A.L. Yuille, J.
Huang, K. Murphy, Progressive neural architecture search, in: Proc. ECCV’18,
Vol. 1, Munich, Germany, 2018, pp. 19–35.

[17] F.P. Such, A. Rawal, J. Lehman, K.O. Stanley, J. Clune, Generative teaching
networks: Accelerating neural architecture search by learning to generate
synthetic training data, in: Proc. ICML’20, 2020, pp. 9206–9216.

[18] X. Ning, Y. Zheng, T. Zhao, Y. Wang, H. Yang, A generic graph-based neural
architecture encoding scheme for predictor-based NAS, in: Proc. ECCV’20,
2020, pp. 189–204.

http://refhub.elsevier.com/S0925-2312(21)01699-4/h0070
http://refhub.elsevier.com/S0925-2312(21)01699-4/h0070


K. Jing, J. Xu and Z. Zhang Neurocomputing xxx (xxxx) xxx
[19] M.S. Abdelfattah, A. Mehrotra, Ł. Dudziak, N.D. Lane, Zero-cost proxies for
lightweight nas, in: Proc. ICLR’21, 2021.

[20] M. Lin, P. Wang, Z. Sun, H. Chen, X. Sun, Q. Qian, H. Li, R. Jin, Zen-nas: A zero-
shot NAS for high-performance deep image recognition, CoRR abs/2102.01063.

[21] I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.C.
Courville, Y. Bengio, Generative adversarial nets, in: Proc. NeurIPS’14,
Montreal, Quebec, Canada, 2014, pp. 2672–2680.

[22] X. Mao, Q. Li, H. Xie, R.Y.K. Lau, Z. Wang, S.P. Smolley, Least squares generative
adversarial networks, in: Proc. IEEE ICCV’17, Venice, Italy, 2017, pp. 2813–
2821.

[23] T. Salimans, I.J. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen,
Improved techniques for training gans, in: Proc. NeurIPS’16, Barcelona, Spain,
2016, pp. 2226–2234.

[24] M. Arjovsky, S. Chintala, L. Bottou, Wasserstein GAN, CoRR abs/1701.07875..
[25] L. Metz, B. Poole, D. Pfau, J. Sohl-Dickstein, Unrolled generative adversarial

networks, in: Proc. ICLR’17, Toulon, France, 2017.
[26] T. Miyato, T. Kataoka, M. Koyama, Y. Yoshida, Spectral normalization for

generative adversarial networks, in: Proc. ICLR’18, Vancouver, BC, Canada,
2018.

[27] M. Mirza, S. Osindero, Conditional generative adversarial nets, CoRR (abs/
1411.1784.).

[28] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, M. Sun, Graph neural networks: A
review of methods and applications, CoRR abs/1812.08434.

[29] T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional
networks, in: Proc. ICLR’17, Toulon, France, 2017.

[30] J. You, R. Ying, X. Ren, W.L. Hamilton, J. Leskovec, Graphrnn: Generating
realistic graphs with deep auto-regressive models, in: Proc. ICML’18,
Stockholm, Sweden, 2018, pp. 5694–5703.

[31] D. Friede, J. Lukasik, H. Stuckenschmidt, M. Keuper, A variational-sequential
graph autoencoder for neural architecture performance prediction, CoRR abs/
1912.05317.

[32] C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, F. Hutter, Nas-bench-101:
Towards reproducible neural architecture search, in: Proc. ICML’19, Long
Beach, California, USA, 2019.

[33] A. Zela, J. Siems, F. Hutter, Nas-bench-1shot1: Benchmarking and dissecting
one-shot neural architecture search, in: Proc. ICLR’20, Addis Ababa, Ethiopia,
2020.

[34] X. Dong, Y. Yang, Nas-bench-201: Extending the scope of reproducible neural
architecture search, in: Proc. ICLR’20, Addis Ababa, Ethiopia, 2020.

[35] X. Zheng, R. Ji, L. Tang, B. Zhang, J. Liu, Q. Tian, Multinomial distribution
learning for effective neural architecture search, in: Proc. IEEE/CVF ICCV’19,
Seoul, Korea (South), 2019, pp. 1304–1313.

[36] M. Arjovsky, L. Bottou, Towards principled methods for training generative
adversarial networks, in: Proc. ICLR’17, 2017.

[37] H. Zhou, M. Yang, J. Wang, W. Pan, Bayesnas: A bayesian approach for neural
architecture search, in: Proc. ICML’19, Long Beach, California, USA, 2019, pp.
7603–7613.

[38] X. Chen, L. Xie, J. Wu, Q. Tian, Progressive differentiable architecture search:
Bridging the depth gap between search and evaluation, in: Proc. IEEE/CVF
ICCV’19, Seoul, Korea (South), 2019, pp. 1294–1303.

[39] Y. Zhou, P. Wang, EPNAS: efficient progressive neural architecture search, in:
Proc. BMVC’19, Cardiff, UK, 2019, p. 71.

[40] Y. Xu, L. Xie, X. Zhang, X. Chen, G. Qi, Q. Tian, H. Xiong, PC-DARTS: partial
channel connections for memory-efficient architecture search, in: Proc.
ICLR’20, Addis Ababa, Ethiopia, 2020.

[41] A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M.
Andreetto, H. Adam, Mobilenets: Efficient convolutional neural networks for
mobile vision applications, CoRR abs/1704.04861.
11
[42] X. Zhang, X. Zhou, M. Lin, J. Sun, Shufflenet: An extremely efficient
convolutional neural network for mobile devices, in: Proc. CVPR 2018, 2018.

[43] M. Sandler, A.G. Howard, M. Zhu, A. Zhmoginov, L. Chen, Mobilenetv 2:
Inverted residuals and linear bottlenecks, in: Proc. CVPR 2018, Salt Lake City,
UT, USA, June 18–22, 2018.

[44] N. Ma, X. Zhang, H. Zheng, J. Sun, Shufflenet V2: practical guidelines for
efficient CNN architecture design, in: Proc. ECCV 2018, Munich, Germany,
September 8–14, 2018.

Kun Jing is a Ph.D. student in School of Computer Sci-
ence and Technology, University of Chinese Academy of
Sciences. He received his B.S. degree in Internet of
things engineering from Chongqing University of Posts
and Telecommunications in 2018. His research interests
are automated machine learning and natural language
processing.
Jungang Xu is a full professor in School of Computer
Science and Technology, University of Chinese Academy
of Sciences. He received his Ph.D. degree in Computer
Applied Technology from Graduate University of Chi-
nese Academy of Sciences in 2003. His current research
interests are automated machine learning, computer
vision and natural language processing.
Zhen Zhang is a research assistant in School of Com-
puter Science and Technology, University of Chinese
Academy of Sciences. She received her M.S. degree in
Data Science from the George Washington University in
2019. Her research interest is automated machine
learning.

http://refhub.elsevier.com/S0925-2312(21)01699-4/h0135
http://refhub.elsevier.com/S0925-2312(21)01699-4/h0135

	A neural architecture generator for efficient search space
	1 Introduction
	2 Related work
	2.1 Neural architecture search
	2.2 Generative adversarial network
	2.3 Graph neural network

	3 Neural architecture generator
	3.1 Large-scale architecture space
	3.1.1 Macro architecture
	3.1.2 Micro architecture

	3.2 Components
	3.2.1 Generator
	3.2.2 Discriminator

	3.3 NAS Dataset Building with Improved Parameter Sharing
	3.4 Training and inference
	3.5 Gradient flow from discriminator to generator using probability graph

	4 Experiments
	4.1 Implementation details
	4.1.1 Architecture space
	4.1.2 NAS dataset
	4.1.3 Accuracy-optimal search on CIFAR-10
	4.1.4 Pareto-optimal front search on CIFAR-10

	4.2 Results on CIFAR-10
	4.3 Transferring the discovered architecture to ImageNet
	4.4 Ablation study
	4.4.1 The improvement of probability graph
	4.4.2 The improvement of label flipping
	4.4.3 The choice of loss function
	4.4.4 The choice of aggregation method

	4.5 More experiments on NAS-Bench-101
	4.5.1 Accuracy-optimal search
	Architecture space
	NAS dataset
	Results

	4.5.2 Pareto-optimal front search
	Architecture space
	NAS dataset
	Results



	5 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	References


