
Graph Masked Autoencoder Enhanced Predictor for Neural Architecture Search

Kun Jing , Jungang Xu and Pengfei Li
School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing,

China
jingkun18@mails.ucas.ac.cn, xujg@ucas.ac.cn, lipengfei@ucas.ac.cn

Abstract
Performance estimation of neural architecture is
a crucial component of neural architecture search
(NAS). Meanwhile, neural predictor is a current
mainstream performance estimation method. How-
ever, it is a challenging task to train the pre-
dictor with few architecture evaluations for effi-
cient NAS. In this paper, we propose a graph
masked autoencoder (GMAE) enhanced predic-
tor, which can reduce the dependence on supervi-
sion data by self-supervised pre-training with un-
trained architectures. We compare our GMAE-
enhanced predictor with existing predictors in dif-
ferent search spaces, and experimental results
show that our predictor has high query uti-
lization. Moreover, GMAE-enhanced predictor
with different search strategies can discover com-
petitive architectures in different search spaces.
Code and supplementary materials are available at
https://github.com/kunjing96/GMAENAS.git.

1 Introduction
Neural architecture search (NAS) has drawn considerable at-
tention, which can automate the process of designing neural
architectures for a given task. Predictor-based NAS method
has recently become popular, which roughly includes Gaus-
sian processes [Swersky et al., 2014; Kandasamy et al., 2018;
Ru et al., 2020], neural networks [Ma et al., 2019; Shi et
al., 2020; Wang et al., 2019; White et al., 2021a], tree-based
methods [Luo et al., 2020a; Siems et al., 2020], and so on.
The performance predictor for NAS performs better when
more standard-trained architectures are available as training
data. However, the training and evaluation of the architec-
tures are extremely time-consuming, thus incurring a high
initialization time.

The compromise of initialization time and quality of pre-
dictor is the key to predictor-based NAS. Some researchers
try to reduce the average time cost of training through
some techniques, e.g., parameter sharing [Pham et al., 2018;
Liu et al., 2019] and proxy data [Park, 2019; Na et al., 2021].
Other works attempt to train the predictor with few standard-
trained architectures, e.g., semi-supervised learning [Luo et
al., 2020b; Tang et al., 2020] and ensemble learning [Wu et

encoder

(GAT)

in

MP 3x3

1x1

out

3x3

in

MP 3x3

1x1

out

3x3

read outread out

predictor

score

encoder

(GAT)

in

MP 3x3

1x1

out

3x3

read out

predictor

score

Fine-Tuning

encoder

(GAT)

decoder

(SoftMax

classifier)

in

1x1

3x3

out

in

1x1 3x3

3x3

out

MP

in

1x1 3x3

3x3

out

MP
encoder

(GAT)

decoder

(SoftMax

classifier)

in

1x1

3x3

out

in

1x1 3x3

3x3

out

MP

Pre-Training

parameter transferring

encoder

(GAT)

in

MP 3x3

1x1

out

3x3

read out

predictor

score

Fine-Tuning

encoder

(GAT)

decoder

(SoftMax

classifier)

in

1x1

3x3

out

in

1x1 3x3

3x3

out

MP

Pre-Training

parameter transferring

0 1 1 0 0

0 0 0 1 0

10 0 0 1

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

00 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

00 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 1 0 1

0 0 0 1 0

10 0 0 0

0 0 0 0 1

0 0 0 0 0

reduction

cell

normal

cell

0 1 1 0 0

0 0 0 1 0

10 0 0 1

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

00 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

00 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 1 0 1

0 0 0 1 0

10 0 0 0

0 0 0 0 1

0 0 0 0 0

reduction

cell

normal

cell

reduction

cell

normal

cell
×N

normal

cell
×N

normal

cell
×N

normal

cell
×N

normal

cell
×N

normal

cell
×N

reduction

cell
convimage

global

avg. pool

task-aware

header

reduction

cell

normal

cell
×N

normal

cell
×N

normal

cell
×N

reduction

cell
convimage

global

avg. pool

task-aware

header

architecture

in

1x1

3x3

out

MP

in

1x1

3x3

out

MP

normal

cell
in

1x1

3x3

out

MP

normal

cell

in

MP

1x1

out

1x1

in

MP

1x1

out

1x1

reduction

cell
in

MP

1x1

out

1x1

reduction

cell

in MP 3x3 1x1 out in MP 3x3 1x1 out

adjacency

matrix

vertex type

matrix

0 1 1 0 0

0 0 0 1 0

10 0 0 1

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

00 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

00 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 1 0 1

0 0 0 1 0

10 0 0 0

0 0 0 0 1

0 0 0 0 0

reduction

cell

normal

cell

reduction

cell

normal

cell
×N

normal

cell
×N

normal

cell
×N

reduction

cell
convimage

global

avg. pool

task-aware

header

architecture

in

1x1

3x3

out

MP

normal

cell

in

MP

1x1

out

1x1

reduction

cell

in MP 3x3 1x1 out in MP 3x3 1x1 out

adjacency

matrix

vertex type

matrix

Figure 1: The overview of GMAE.

al., 2021; White et al., 2021b]. We observe that the existing
methods do not make full use of a large amount of available
unlabeled data, i.e., all untrained architectures themselves in
the search space.

Based on the above observations, we propose a graph
masked autoencoder (GMAE) that can help train an archi-
tecture performance predictor for neural architecture search,
which can improve query utilization, as shown in Figure 1.
Inspired by the success of self-supervised learning in natural
language processing (NLP) and computer vision (CV), like
BERT [Devlin et al., 2019] and masked autoencoder (MAE)
[He et al., 2021], we utilize a large amount of unlabeled
data (untrained architectures) in search space to pre-train the
model. Specifically, we randomly mask some vertices in di-
rected acyclic graphs (DAGs) that represent architectures and
train the model to reconstruct the DAGs. After pre-training,
we use only limited labeled data (the standard-trained ar-
chitectures) to fine-tune the model, which is common prac-
tice when labeled data is insufficient. Furthermore, our pre-
trained model can be transferred to different tasks in the same
search space. The experimental results show that our pre-
trained model can learn the encoding representation of neural
architecture. Using limited standard-trained architectures, we
can train the pre-trained model followed by a linear projection
as a predictor whose generalization performance is improved.

https://github.com/kunjing96/GMAENAS.git

We combine the predictor with different search strategies for
NAS, and the architecture we discover has advanced perfor-
mance on different NAS benchmarks. In order to verify the
performance on the actual NAS task, we use 100 evaluated
architecture samples on CIFAR-10 and train our predictor for
NAS. The discovered architecture can achieve competitive re-
sults on CIFAR-10.

Our contributions are summarized as follows:

• We construct a neural architecture performance predic-
tor through the self-supervised pre-training of GMAE,
which can reduce the dependence on labeled data during
the training of predictor and obtain higher generalization
performance.

• We compare our predictor with others to prove that
GMAE improves query utilization. We use different
search algorithms combined with the fine-tuned predic-
tor to prove the superiority of our method on different
NAS benchmarks. On the actual NAS task, the architec-
ture we discover achieved competitive results.

• We also performed ablation studies to demonstrate the
effectiveness of our method. One main discovery is
that generative self-supervised learning (e.g., masked
graph reconstruction) is better than discriminant self-
supervised learning such as graph contrastive learning
in architecture performance estimation.

2 Related Work
Architecture performance predictor is first applied to NAS in
PNAS [Liu et al., 2018]. PNAS uses an ensemble of five
LSTM-based predictors as the surrogate model that can read
a serialized architecture to predict the validation accuracy.
Representing an architecture as a computational graph, some
works naturally try to predict the performance of architec-
ture by graph neural networks (GNNs) [Wen et al., 2020;
Chen et al., 2021a] and information propagation on graphs
[Ning et al., 2020]. For efficiency, the predictor should
not have much predictive performance reduction when using
fewer trained architectures as its training data. Some works
[Wu et al., 2021] propose ensemble models of many weaker
predictors, which can achieve better predictive performance
than any single model in the case of few architecture evalu-
ations. The above method only uses supervised data to train
predictors, while we utilize a large number of untrained archi-
tectures in the search space to help train models, which can
reduce the dependence on supervised data.

There are two existing works closer to our work, which also
use untrained architectures to help train predictors. One work
is that a semi-supervised assessor [Tang et al., 2020] predict
their performances by a GNN, which employs an autoencoder
to discover representations of architectures and construct a
graph to capture the similarities of architectures. The differ-
ence is that we use a masked autoencoder instead of an au-
toencoder for better representation and we can independently
predict the performance of one architecture without other ar-
chitectures. Another work is that computation-aware neu-
ral architecture encoding (CATE) [Yan et al., 2021] employs
a pairwise pre-training scheme to learn computation-aware

encoder

(GAT)

in

MP 3x3

1x1

out

3x3

in

MP 3x3

1x1

out

3x3

read outread out

predictor

score

encoder

(GAT)

in

MP 3x3

1x1

out

3x3

read out

predictor

score

Fine-Tuning

encoder

(GAT)

decoder

(SoftMax

classifier)

in

1x1

3x3

out

in

1x1 3x3

3x3

out

MP

in

1x1 3x3

3x3

out

MP
encoder

(GAT)

decoder

(SoftMax

classifier)

in

1x1

3x3

out

in

1x1 3x3

3x3

out

MP

Pre-Training

parameter transferring

encoder

(GAT)

in

MP 3x3

1x1

out

3x3

read out

predictor

score

Fine-Tuning

encoder

(GAT)

decoder

(SoftMax

classifier)

in

1x1

3x3

out

in

1x1 3x3

3x3

out

MP

Pre-Training

parameter transferring

0 1 1 0 0

0 0 0 1 0

10 0 0 1

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

00 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

00 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 1 0 1

0 0 0 1 0

10 0 0 0

0 0 0 0 1

0 0 0 0 0

reduction

cell

normal

cell

0 1 1 0 0

0 0 0 1 0

10 0 0 1

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

00 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

00 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 1 0 1

0 0 0 1 0

10 0 0 0

0 0 0 0 1

0 0 0 0 0

reduction

cell

normal

cell

reduction

cell

normal

cell
×N

normal

cell
×N

normal

cell
×N

normal

cell
×N

normal

cell
×N

normal

cell
×N

reduction

cell
convimage

global

avg. pool

task-aware

header

reduction

cell

normal

cell
×N

normal

cell
×N

normal

cell
×N

reduction

cell
convimage

global

avg. pool

task-aware

header

architecture

in

1x1

3x3

out

MP

in

1x1

3x3

out

MP

normal

cell
in

1x1

3x3

out

MP

normal

cell

in

MP

1x1

out

1x1

in

MP

1x1

out

1x1

reduction

cell
in

MP

1x1

out

1x1

reduction

cell

in MP 3x3 1x1 out in MP 3x3 1x1 out

adjacency

matrix

vertex-type

matrix

0 1 1 0 0

0 0 0 1 0

10 0 0 1

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

00 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

00 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 1 0 1

0 0 0 1 0

10 0 0 0

0 0 0 0 1

0 0 0 0 0

reduction

cell

normal

cell

reduction

cell

normal

cell
×N

normal

cell
×N

normal

cell
×N

reduction

cell
convimage

global

avg. pool

task-aware

header

architecture

in

1x1

3x3

out

MP

normal

cell

in

MP

1x1

out

1x1

reduction

cell

in MP 3x3 1x1 out in MP 3x3 1x1 out

adjacency

matrix

vertex-type

matrix

adjacency

matrix

vertex type

matrix
in MP 3x3 1x1MP 3x3 1x1 outin MP 3x3 1x1MP 3x3 1x1 out

0 1 1 0 1

0 0 0 1 0

00 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 0 0 0

0 0 0 0 0

00 0 0 0

0 0 1

0 0 1

0 0 0

0 1 1 0 1

0 0 0 1 0

00 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 0 0 0

0 0 0 0 0

00 0 0 0

0 0 1

0 0 1

0 0 0

adjacency

matrix

vertex type

matrix
in MP 3x3 1x1MP 3x3 1x1 out

0 1 1 0 1

0 0 0 1 0

00 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 0 0 0

0 0 0 0 0

00 0 0 0

0 0 1

0 0 1

0 0 0

cell

3x3 conv
1x1 conv
Max Pooling

cell

3x3 conv
1x1 conv
Max Pooling

in

1x1

3x3

outMP

1x1

MP

3x3

cell

in

1x1

3x3

outMP

1x1

MP

3x3

cell

cell

3x3 conv
1x1 conv
Max Pooling

in

1x1

3x3

outMP

1x1

MP

3x3

cell

adjacency

matrix

vertex type

matrix
in MP 3x3 1x1MP 3x3 1x1 out

0 1 1 0 1

0 0 0 1 0

00 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 0 0 0

0 0 0 0 0

00 0 0 0

0 0 1

0 0 1

0 0 0

cell

3x3 conv
1x1 conv
Max Pooling

in

1x1

3x3

outMP

1x1

MP

3x3

cellFigure 2: The architecture space and its representation.

encodings using Transformers with cross-attention. The en-
codings contain dense and contextualized computation infor-
mation of neural architectures. Instead of using the data-
hungry Transformer model, we use the GNN model. Al-
though graph reconstruction pre-training is used, we take ar-
chitectures as the input rather than computationally similar
architecture pairs in the pre-training process, which can im-
prove the efficiency of the pre-training.

3 Method
We describe the general form of architecture space in Sec-
tion 3.1, where each architecture can be represented as a di-
rected acyclic graph. We then introduce the encoder (Sec-
tion 3.2) and decoder (Section 3.3) of our model. Finally, we
introduce how to pre-train the model (Section 3.4), fine-tune
the pre-trained model to build an architecture performance
predictor (Section 3.5), and use the predictor for neural archi-
tecture search (Section 3.6).

3.1 Architecture Space
Following most NAS works [Pham et al., 2018; Liu et al.,
2019], our architecture space is also based on cells or blocks.
Each architecture consists of S stages, where each stage is
composed of L-stacked normal cells followed by a reduc-
tion cell, except that the last stage is followed by a pooling
layer and a task-aware header. For example, SoftMax classi-
fier header is used in image classification.

Each cell is a DAG that consists of an ordered sequence
of N vertices. In this work, we use an operation-on-vertex
search space, i.e., each vertex represents a candidate opera-
tion and each edge represents the direction of the tensor (fea-
ture map) flow. The ingoing edge and outgoing edge repre-
sent the input and output feature map or tensor of the opera-
tion at the vertex, respectively. Therefore, each architecture
can be represented by the DAGs corresponding to its stacked
blocks or cells. For the convenience of representation, we di-
rectly merge the DAGs of normal and reduction cells into one
DAG and use an adjacency matrix and a vertex-type matrix to
represent the DAG, as shown in Figure 2.

3.2 Encoder
Our encoder is a graph attention network (GAT), which takes
a DAG as its input, embeds candidate operations at all ver-
tices in the DAG by an embedding layer, and then processes
the embeddings using a series of GAT layers by message
passing along the edges. Specifically, each K-head GAT

layer, parametrized by a weight ωk ∈ Rd′×d and an atten-
tion mechanism parameter a ∈ R2d, can be formulated as

h′
i =

K

∥
k=1

σ(
∑

j∈Ni∪{i}

αk
ij · ωkhj), (1)

αk
ij =

exp(LeakyReLU(a⊤[ωkhi∥ωkhj]))∑
k∈Ni∪{i} exp(LeakyReLU(a⊤[ωkhi∥ωkhk]))

, (2)

where hi ∈ Rd and h′
i ∈ Rd′

are the old and new features of
vertex i, respectively; ∥ represents concatenation; σ is the ap-
plied nonlinearity function by us; Ni indicates the neighbor
of vertex i; αk

ij is the normalized attention coefficient com-
puted by the SoftMax function.

3.3 Decoder
Our decoder is a single linear projection followed by a Soft-
Max function, which decodes the vertex features provided
by our encoder and predicts the candidate operation types at
masked vertices of the DAG fed into our encoder. All ver-
tices share the decoder parameters. The decoder is only used
during the pre-training process to reconstruct the DAGs.

3.4 Pre-Training
Pre-training method. There are two types of mainstream
self-supervised pre-trainings, including discriminant and gen-
erative methods. We choose the generative method, i.e.,
masked autoencoder task. Similar to all autoencoder, our
graph masked autoencoder reconstructs the DAGs of archi-
tectures given the partial observations (the masked DAGs).
Our GMAE pre-training is similar to masked language mod-
eling [Devlin et al., 2019] and masked autoencoder (MAE)
[He et al., 2021]. The difference is that the relationship be-
tween vertices is defined by the adjacency matrix of DAG.
Masking. We use the simple masking strategy to mask the
vertice embeddings randomly without replacement, following
a uniform distribution. Unlike BERT and MAE, the choice of
masking ratios is sensitive to search space in our experiments.
Objective function. Our GMAE reconstructs the input
DAGs by predicting the candidate operation types at masked
vertices instead of all ones. Our decoder is a simple and single
SoftMax classifier, whose output is the normalized probabil-
ity of candidate operation types by the SoftMax function. We
compute the cross-entropy error (CE) between the masked
vertices of the original and reconstructed DAGs as the pre-
training loss function, which can be formulated as

Lpt = − 1

NMV

∑
i∈MV

C∑
c=1

yiclog(pic), (3)

where NMV is the number of masked vertices MV of the
DAG G; C represents the number of the candidate categories.
If the real category of the operation at the vertex i is c, yic is
1; otherwise yic is 0. pic is the probability that the prediction
category of the operation at the vertex i is c.
Evaluation. We evaluate our pre-trained model in two ways
of supervised training: end-to-end and partial fine-tuning.

3.5 Fine-Tuning
In order to robustly evaluate our pre-training model, we need
to repeatedly fine-tune the pre-trained model many times dur-
ing evaluation and compute their average metrics. Fortu-
nately, since we use very little supervised data for fine-tuning,
the evaluation takes only several minutes.

Metrics. The Kendall rank correlation coefficient τ is a
statistic to measure the rank correlation, i.e., the similarity of
the orderings of the data, which ranges from 1 to -1. Due to
the fact that the relative ranking of the architectures is more
important than its specific performance value for NAS, we
choose the Kendall ranking correlation coefficient τ as the
metrics of our predictor, which is the same as most NAS
works [White et al., 2021b; Siems et al., 2020].

End-to-end fine-tuning. We ignore our decoder and only
use the encoder with the pre-trained parameters followed by
the readout layer and the predictor (regressor) composed of
several fully connected layers. Then, we fine-tune the new
model with supervised data by end-to-end training.

Partial fine-tuning. We can also evaluate the pre-trained
model by freezing the encoder parameters and updating only
the predictor parameters. Therefore, partial fine-tuning usu-
ally takes less time than end-to-end fine-tuning.

Fine-tuning target. A simple idea is that mean squared er-
ror (MSE) between the predicted and real accuracies is used
as the loss function. However, MSE loss forces the model to
learn to predict the absolute performance rather than the rela-
tive ranking, which seems to be too strict to obtain the accu-
rate predictions. Besides, lower MSE is sometimes not equiv-
alent to better ranking. Inspired by learning to rank (LTR), the
hinger loss and Bayesian personalized ranking (BPR) loss are
commonly used for training the model that focuses only on
relative ranking. We use BPR loss for fine-tuning our predic-
tor, which can be formulated as

Lft = −
∑
i,j∈S

log(sigmoid(si − sj)), (4)

where S is the pair-wise architecture set; si is the predicted
performance of architecture i.

3.6 Search
After pre-training GMAE and fine-tuning our predictor, we
use our predictor as evaluation strategy for NAS. In our ex-
periments, we enhance four common search strategies, i.e.,
random search, reinforcement learning [Zoph and Le, 2017;
Baker et al., 2017], aging evolution [Real et al., 2019], and
Bayesian optimization [White et al., 2021a], by our predic-
tor. The algorithm descriptions are shown in Algorithm 1.
The time complexity is O(NP × N2) where N is the maxi-
mum number of queries and NP is the number of predictors
in Bayesian optimization strategy (NP = 1 in others).

4 Experiments
We first verify the effectiveness of the GMAE-enhanced pre-
dictor in different search spaces in Section 4.1. Furthermore,
in Section 4.2, we demonstrate that the query utilization of

Algorithm 1 GMAE-Enhanced Predictor Based NAS
(Different Search Strategies)

Draw N0 architectures uniformly at random from search space A,
train them, and add them into history.

Random Search Strategy
while |history| < N −N0 do

Train a predictor P on history.
Draw C candidates uniformly at random from A.
For each candidate a ∈ C, evaluate its score P (a).
Choose Top-K candidates by P (a), train them, and add them
into history.

end while

Reinforcement Learning Strategy
while |history| < N −N0 do

Train a predictor P on history.
Select C candidates using policy π.
For each candidate a ∈ C, evaluate its score P (a).
Choose Top-K candidates by P (a), train them, and add them
into history.
Compute reward R, and update π by policy gradient.

end while

Aging Evolution Strategy
Append N0 architectures into population.
while |history| < N −N0 do

Train a predictor P on history.
Generate a set of C candidates by randomly mutating the
M high-accuracy architectures selected by Tournament in
population.
For each candidate a ∈ C, evaluate its score P (a).
Choose Top-K candidates by P (a), train them, and add them
into history and population.
Remove the oldest individual from left of population.

end while

Bayesian Optimization Strategy
while |history| < N −N0 do

Train an ensemble P of predictors on history.
Generate a set of C candidates by randomly mutating the Top-
M high-accuracy architectures in history.
For each candidate a ∈ C, evaluate its acquisition function
ϕ(a, P).
Choose Top-K candidates by ϕ(a, P), train them, and add
them into history.

end while

return highest-accuracy model in history.

our search method surpasses other predictor-based methods.
In addition to the experiments on two different NAS bench-
marks, we also use our search method on the actual NAS task.
Finally, in Section 4.3, we conduct some ablation studies.

NAS-Bench-101 The NAS-Bench-101 search space [Ying
et al., 2019] consists of 423K unique convolutional architec-
tures. Each architecture is restricted to the cell space. The
cell includes up to 7 vertices and at most 9 edges. The inter-
mediate vertices can be either 1×1 convolution, 3×3 convo-
lution, or 3 × 3 max pooling. The NAS-Bench-101 provides
their validation and test accuracies on CIFAR-10.

NAS-Bench-301 (DARTS) The NAS-Bench-301 search
space [Liu et al., 2019; Siems et al., 2020] is the larger cell-
based space containing approximately 1018 architectures and
their performances on CIFAR-10. Each normal or reduction
cell is treated as a DAG with 7 vertices. Each directed edge
represents one of the following operations: 3 × 3 and 5 × 5
separable convolutions, 3×3 and 5×5 dilated separable con-
volutions, 3×3 max pooling, 3×3 average pooling, and skip
connection.

Because NAS-Bench-301 is an operation-on-edge search
space, we have to convert it into an operation-on-vertex space
and then represent it in the way shown in Figure 2. Please see
supplementary materials for details of converting.

4.1 Predictor Evaluation
To measure the quality of the pre-training model, we con-
sider architecture performance prediction as its downstream
task. Architecture performance prediction is the key to NAS.
Predictors with high Kendall τ can often find better archi-
tectures combined with search strategies. After pre-training,
we compare our GMAE-enhanced predictor with other pop-
ular architecture performance predictors [Ning et al., 2020;
Tang et al., 2020; Xu et al., 2021; Wen et al., 2020] to prove
that GMAE pre-training can help obtain a better architecture
performance predictor. We directly use the reported results in
their works for comparison. Our pre-training and fine-tuning
setups are reported in the supplementary materials.

As shown in Figure 3, we report the Kendall τ values of
different predictors with different numbers of training sam-
ples that are less than 5000 in NAS-Bench-101 space. When
a large number of training samples are used for training,
the performance of GMAE-enhanced predictor is only worse
than GCN and ReNAS. This is because we use the same
training hyperparameters for fine-tuning with different train-
ing samples and result in no convergence of the fine-tuning.
However, for predictor-based NAS, because the architecture
query takes a lot of time, we pay more attention to the per-
formance of predictor when the number of training samples
is small. When using less than 1500 training samples for
predictor training, GMAE-enhanced predictor is superior to
other predictors. In particular, when the number of train-
ing samples is less than 500, it is about 0.1 higher than the
Kendall τ of the best predictor. The reason is that before the
fine-tuning of our predictor, the pre-training of GMAE helps
the encoder learn the better prior representation of the archi-
tecture. This prior representation is inherited by the predictor
and helps the predictor perform better in the case of extremely
few samples. The experimental results show that through pre-
training, GMAE-enhanced predictor can obtain high Kendall
τ under the condition of fewer training samples, i.e., it can
help improve the predictor and make it better than most exist-
ing neural predictors.

Table 1 also reports the Kendall τ values of different num-
bers of training samples in NAS-Bench-301. As the number
of samples increases, the growth of Kendall τ slows down
and the Kendall τ values always maintain small standard de-
viations. GMAE-enhanced predictor can achieve Kendall τ
close to 0.6 under the training of 100 training samples, which
proves that it can work well in larger search spaces.

0 1000 2000 3000 4000
Number of Samples

0.4

0.5

0.6

0.7

0.8
Ke

nd
al

l T
au GMAE (Ours)

Peephole
E2EPP
SemiAssessor
MLP
LSTM
GCN
ReNAS
NPNAS

Figure 3: The comparison between GMAE-enhanced predictor and
SOTA predictors with below 5000 training samples in NAS-Bench-
101. It reports the mean and standard deviation of Kendall τ of 10
independent runs.

Samples 100 200 500 1000 10000

avg. 0.5988 0.6301 0.6530 0.6569 0.6809
std. 0.0175 0.0115 0.0162 0.0134 0.0090

Table 1: The Kendall τ of GMAE with below 10000 training sam-
ples in NAS-Bench-301 (DARTS). It reports the mean and standard
deviation of Kendall τ of 10 independent runs.

4.2 Search Evaluation
We use our predictor to enhance four predictor-independent
search strategies, including random search (R), reinforcement
learning (RL) [Zoph and Le, 2017; Baker et al., 2017], aging
evolution (AE) [Real et al., 2019], and Bayesian optimiza-
tion (BO) [White et al., 2021a]. We compare our four NAS
methods (GMAE-NAS) with two SOTA predictor-based NAS
methods, i.e., BANANAS [White et al., 2021a] and CATE
[Yan et al., 2021], to prove that our predictor can combine and
enhance different search strategies to achieve higher query
utilization1 and discover better architectures. We replicate
them using open-source code and default hyper-parameters
provided in their works and report the test errors in the search
process, as shown in Figure 4. Our search setup is reported in
the supplementary materials.

The search process of the six NAS methods in NAS-Bench-
101 space is shown in Figure 4(a). We report the test errors
every 10 queries up to 150 queries. The random search and
reinforcement learning strategies are close to BANANAS and
worse than CATE. The reason is that random search and re-
inforcement learning strategies are outdated, which usually
perform worse among the baseline search strategies. After
being enhanced by our GMAE, their performance is close to
BANANAS (the past SOTA NAS method), which shows that
GMAE is indeed effective. The Bayesian optimization and
aging evolution strategies are significantly better than CATE.
In particular, aging evolution strategy achieves a lower test

1Query utilization is defined as N−NQ

N
where NQ is the number

of queries to discover the optimal architecture and N is the total
number of architectures in the search space.

20 40 60 80 100 120 140
Number of Queries

5.5

6.0

6.5

7.0

7.5

Te
st

 E
rro

r (
%

)

GMAE+R
GMAE+RL
GMAE+AE
GMAE+BO
BANANAS
CATE-DNGO-LS

(a) NAS-Bench-101.

20 40 60 80 100
Number of Queries

5.0

5.2

5.4

5.6

5.8

6.0

6.2

Te
st

 E
rro

r (
%

)

GMAE+R
GMAE+RL
GMAE+AE
GMAE+BO
BANANAS
CATE-DNGO-LS

(b) NAS-Bench-301.

Figure 4: The comparison between GMAE-enhanced strategies and
SOTA NAS methods in NAS-Bench-101 (left) and NAS-Bench-301
(right). It reports the mean and standard deviation of test error of 10
independent runs. The maximum number of queries is set to 150 for
NAS-Bench-101 and 100 for NAS-Bench-301.

error in NAS-Bench-101 and has higher query utilization.
Compared with BANANAS and CATE, our method has a nar-
rower error band, i.e., it is more stable. The experimental
results demonstrate that our predictor with pre-training can
improve the query utilization.

Figure 4(b) also reports the test errors every 10 queries un-
der the condition of up to 100 queries in NAS-Bench-301
space. The conclusion in NAS-Bench-301 is consistent with
that in NAS-Bench-101 except for two differences: the gap
between different methods is more significant; the Bayesian
optimization strategy is superior to the aging evolution strat-
egy in NAS-Bench-301 space. Experimental results prove
that our method has more advantages in larger search spaces.

NAS-Bench-301 uses a surrogate model trained on 60k ar-
chitectures to predict the performance of all the other archi-
tectures in the DARTS space. Therefore, the architecture per-
formances can be inaccurate. Given that, we further prove the
effectiveness of GMAE-NAS on the actual NAS task by train-
ing the queried architectures from scratch. Detailed setups
of searching and training are reported in the supplementary
materials. The average validation error of the last 5 epochs
is computed as the performance label. For fair comparison,
we compare our discovered architectures using the common
evaluation script. Please see supplementary materials for the
setup of architecture evaluation and our discovered architec-
tures. Table 2 reports the test errors of different NAS algo-
rithms. GMAE-NAS (BO) achieves competitive performance
on the actual NAS task of DARTS space, which is superior to
GMAE-NAS (AE) and other methods. In particular, GMAE-
NAS (BO) has a 0.06 lower test error and is more stable than
CATE-DNGO-LS that also use the idea of pre-training. This
is consistent with the conclusion in Figure 4(b).

4.3 Ablation Study
All ablation studies are performed on the NAS-Bench-101
benchmark. We report the Kendall τ values of partial fine-
tuned predictors after pre-training.

Choice of Pre-Training Methods
As shown in Figure 5(a), compared with two types of graph
contrastive learning, including GraphCL [You et al., 2020]
and MVGRL [Hassani and Ahmadi, 2020], our GMAE pre-
training method can learn better graph representation that is
more conducive to architecture performance prediction.

Algorithms Test Error Parameters Search Cost Search Type
(%) (M) (GPU days)

CTNAS [Chen et al., 2021b] 2.59±0.04 3.6 0.3 RL+neural comparator
RANK-NOSH [Wang et al., 2021] 2.53±0.02 3.5 - NOSH+neural predictor
BANANAS [White et al., 2021a] 2.67±0.07 3.6 10.2 BO+neural predictor
CATE-DNGO-LS [Yan et al., 2021] 2.56±0.08 2.9 3.3 BO+LS+neural predictor∗

GMAE-NAS (AE) 2.56±0.04 4.0 3.3 AE+neural predictor∗

GMAE-NAS (BO) 2.50±0.03 3.8 3.3 BO+neural predictor∗

Table 2: The comparison of NAS algorithms in the NAS-Bench-301 (DARTS) search space. The search cost unit is GPU-days on a Tesla
V100. ∗ denotes that the predictor is enhanced by the pre-training. It reports the test error of 3 independent runs for our methods.

GraphCL MVGRL MAE (Ours)
Pre-Training Method

0.50

0.55

0.60

0.65

0.70

0.75

Ke
nd

al
l T

au

(a) Choice of pre-training methods.

5% 15% 25% 50% 75% (Ours)
Masking Ratio

0.50

0.55

0.60

0.65

0.70

0.75

Ke
nd

al
l T

au

(b) Choice of masking ratios.

all masked (Ours)
Objective Function

0.50

0.55

0.60

0.65

0.70

0.75

Ke
nd

al
l T

au

(c) Choice of objective functions.

Transformer GCN GAT (Ours)
Model

0.50

0.55

0.60

0.65

0.70

0.75

Ke
nd

al
l T

au

(d) Choice of models.

0.1 0.2 0.5 1.0
Proportion of Evaluations (%)

0.50

0.55

0.60

0.65

0.70

Ke
nd

al
l T

au

MSE
Hinge
BPR (Ours)

(e) Choice of fine-tuning targets.

0.1 0.2 0.5 1.0
Proportion of Evaluations (%)

0.68

0.70

0.72

0.74

0.76

0.78

Ke
nd

al
l T

au

Training from scratch
Partial fine-tuning
End-to-end fine-tuning

(f) Choice of fine-tuning modes.

Figure 5: The ablation studies of pre-training methods, masking ratios, objective functions, models, fine-tuning targets, and fine-tuning
modes, in NAS-Bench-101. It reports the mean and standard deviation of Kendall τ of 10 independent runs.

Choice of Masking Ratios
As shown in Figure 5(b), the masking ratio of 75% is the best
option for NAS-Bench-101 space. But the masking ratio of
5% is the best for NAS-Bench-301 space that is larger and
different from the NAS-Bench-101 space, which proves that
the choice of masking ratios is sensitive to search space.

Choice of Objective Functions
Figure 5(c) shows that reconstructing the masked vertices is
the better objective function than reconstructing all vertices.

Choice of Models
Figure 5(d) demonstrates that the data-hungry Transformer
model fails to handle tasks with limited training data and
GNN is the better choice. We choose the GAT model as a
pre-training model and use it to build our predictor.

Choice of Fine-Tuning Targets
As shown in Figure 5(e), BPR loss is the optimal option
across different numbers of training samples. Even in the case
of limited training data, the model trained by BPR loss is ex-
tremely stable. That is because BPR loss pays more attention
to ranking and it is smoother than Hinge loss.

Choice of Fine-Tuning Modes
Figure 5(f) shows that with extremely few training samples,
our method can achieve a higher Kendall τ through end-
to-end fine-tuning the pre-trained model, which proves that
GMAE reduces the dependence on training data. However,
when training with a large amount of data, our method does
not perform well because the pre-training model does not
have enough time to converge. Besides, it is worth noting that
when we partial fine-tune our predictor, our predictor obtains
higher Kendall τ than most existing predictors.

5 Conclusion
In this paper, we propose a GMAE that can help the train-
ing of an architecture performance predictor for NAS. It
is demonstrated that through self-supervised pre-training,
GMAE can reduce the dependence on training data to re-
alize the predictor with high query utilization and improve
the efficiency of predictor-based NAS. Our experimental re-
sults show its effectiveness and flexibility along with different
search strategies in different search spaces. We anticipate that
GMAE is a promising predictor-based NAS paradigm and it
can bring vitality to the NAS community.

References
[Baker et al., 2017] B. Baker, O. Gupta, N. Naik, et al. De-

signing neural network architectures using reinforcement
learning. In Proc. ICLR, 2017.

[Chen et al., 2021a] X. Chen, L. Xie, J. Wu, et al. Fitting the
search space of weight-sharing NAS with graph convolu-
tional networks. In Proc. AAAI, 2021.

[Chen et al., 2021b] Y. Chen, Y. Guo, Q. Chen, et al. Con-
trastive neural architecture search with neural architecture
comparators. In Proc. CVPR, 2021.

[Devlin et al., 2019] J. Devlin, M. Chang, K. Lee, et al.
BERT: pre-training of deep bidirectional transformers for
language understanding. In Proc. NAACL-HLT, 2019.

[Hassani and Ahmadi, 2020] K. Hassani and A. H. K. Ah-
madi. Contrastive multi-view representation learning on
graphs. In Proc. ICML, 2020.

[He et al., 2021] K. He, X. Chen, S. Xie, et al. Masked au-
toencoders are scalable vision learners. arXiv preprint
arXiv:2111.06377, 2021.

[Kandasamy et al., 2018] K. Kandasamy, W. Neiswanger,
J. Schneider, et al. Neural architecture search with
bayesian optimisation and optimal transport. In Proc.
NeurIPS, 2018.

[Liu et al., 2018] C. Liu, B. Zoph, M. Neumann, et al. Pro-
gressive neural architecture search. In Proc. ECCV, 2018.

[Liu et al., 2019] H. Liu, K. Simonyan, and Y. Yang.
DARTS: differentiable architecture search. In Proc. ICLR,
2019.

[Luo et al., 2020a] R. Luo, X. Tan, R. Wang, et al. Neu-
ral architecture search with GBDT. arXiv preprint
arXiv:2007.04785, 2020.

[Luo et al., 2020b] R. Luo, X. Tan, R. Wang, et al. Semi-
supervised neural architecture search. In Proc. NeurIPS,
2020.

[Ma et al., 2019] L. Ma, J. Cui, and B. Yang. Deep neural
architecture search with deep graph bayesian optimization.
In Proc. WI, 2019.

[Na et al., 2021] B. Na, J. Mok, H. Choe, et al. Accelerating
neural architecture search via proxy data. In Proc. IJCAI,
2021.

[Ning et al., 2020] X. Ning, Y. Zheng, T. Zhao, et al. A
generic graph-based neural architecture encoding scheme
for predictor-based NAS. In Proc. ECCV, 2020.

[Park, 2019] M. Park. Data proxy generation for fast
and efficient neural architecture search. arXiv preprint
arXiv:1911.09322, 2019.

[Pham et al., 2018] H. Pham, M. Y. Guan, B. Zoph, et al. Ef-
ficient neural architecture search via parameter sharing. In
Proc. ICML, 2018.

[Real et al., 2019] E. Real, A. Aggarwal, Y. Huang, et al.
Regularized evolution for image classifier architecture
search. In Proc. AAAI, 2019.

[Ru et al., 2020] B. X. Ru, X. Wan, X. Dong, et al.
Neural architecture search using bayesian optimisa-
tion with weisfeiler-lehman kernel. arXiv preprint
arXiv:2006.07556, 2020.

[Shi et al., 2020] H. Shi, R. Pi, H. Xu, et al. Bridging the
gap between sample-based and one-shot neural architec-
ture search with BONAS. In Proc. NeurIPS, 2020.

[Siems et al., 2020] J. Siems, L. Zimmer, A. Zela, et al. Nas-
bench-301 and the case for surrogate benchmarks for neu-
ral architecture search. arXiv preprint arXiv:2008.09777,
2020.

[Swersky et al., 2014] K. Swersky, D. Duvenaud, J. Snoek,
et al. Raiders of the lost architecture: Kernels for
bayesian optimization in conditional parameter spaces.
arXiv preprint arXiv:1409.4011, 2014.

[Tang et al., 2020] Y. Tang, Y. Wang, Y. Xu, et al. A
semi-supervised assessor of neural architectures. In Proc.
CVPR, 2020.

[Wang et al., 2019] L. Wang, Y. Zhao, Y. Jinnai, et al. Al-
phax: exploring neural architectures with deep neural
networks and monte carlo tree search. arXiv preprint
arXiv:1903.11059, 2019.

[Wang et al., 2021] R. Wang, X. Chen, M. Cheng, et al.
RANK-NOSH: efficient predictor-based architecture
search via non-uniform successive halving. arXiv preprint
arXiv:2108.08019, 2021.

[Wen et al., 2020] W. Wen, H. Liu, Y. Chen, et al. Neural
predictor for neural architecture search. In Proc. ECCV,
2020.

[White et al., 2021a] C. White, W. Neiswanger, and Y. Sa-
vani. BANANAS: bayesian optimization with neural ar-
chitectures for neural architecture search. In Proc. AAAI,
2021.

[White et al., 2021b] C. White, A. Zela, B. Ru, et al. How
powerful are performance predictors in neural architecture
search? arXiv preprint arXiv:2104.01177, 2021.

[Wu et al., 2021] J. Wu, X. Dai, D. Chen, et al. Weak
NAS predictors are all you need. arXiv preprint
arXiv:2102.10490, 2021.

[Xu et al., 2021] Y. Xu, Y. Wang, K. Han, et al. Renas: Rel-
ativistic evaluation of neural architecture search. In Proc.
CVPR, 2021.

[Yan et al., 2021] S. Yan, K. Song, F. Liu, et al. CATE:
computation-aware neural architecture encoding with
transformers. In Proc. ICML, 2021.

[Ying et al., 2019] C. Ying, A. Klein, E. Christiansen, et al.
Nas-bench-101: Towards reproducible neural architecture
search. In Proc. ICML, 2019.

[You et al., 2020] Y. You, T. Chen, Y. Sui, et al. Graph con-
trastive learning with augmentations. In Proc. NeurIPS,
2020.

[Zoph and Le, 2017] B. Zoph and Q. V. Le. Neural architec-
ture search with reinforcement learning. In Proc. ICLR,
2017.

A Conversion to Operation-On-Vertex Search
Space

As shown in Figure 6, we convert operation-on-edge architec-
ture to operation-on-vertex architecture via a simple conver-
sion. Following the description in Section 3.1, an architecture
can also be represented by an adjacency matrix and a vertex-
type matrix.

encoder

(GAT)

in

MP 3x3

1x1

out

3x3

in

MP 3x3

1x1

out

3x3

read outread out

predictor

score

encoder

(GAT)

in

MP 3x3

1x1

out

3x3

read out

predictor

score

Fine-Tuning

encoder

(GAT)

decoder

(SoftMax

classifier)

in

1x1

3x3

out

in

1x1 3x3

3x3

out

MP

in

1x1 3x3

3x3

out

MP
encoder

(GAT)

decoder

(SoftMax

classifier)

in

1x1

3x3

out

in

1x1 3x3

3x3

out

MP

Pre-Training

parameter transferring

encoder

(GAT)

in

MP 3x3

1x1

out

3x3

read out

predictor

score

Fine-Tuning

encoder

(GAT)

decoder

(SoftMax

classifier)

in

1x1

3x3

out

in

1x1 3x3

3x3

out

MP

Pre-Training

parameter transferring

0 1 1 0 0

0 0 0 1 0

10 0 0 1

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

00 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

00 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 1 0 1

0 0 0 1 0

10 0 0 0

0 0 0 0 1

0 0 0 0 0

reduction

cell

normal

cell

0 1 1 0 0

0 0 0 1 0

10 0 0 1

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

00 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

00 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 1 0 1

0 0 0 1 0

10 0 0 0

0 0 0 0 1

0 0 0 0 0

reduction

cell

normal

cell

reduction

cell

normal

cell
×N

normal

cell
×N

normal

cell
×N

normal

cell
×N

normal

cell
×N

normal

cell
×N

reduction

cell
convimage

global

avg. pool

task-aware

header

reduction

cell

normal

cell
×N

normal

cell
×N

normal

cell
×N

reduction

cell
convimage

global

avg. pool

task-aware

header

architecture

in

1x1

3x3

out

MP

in

1x1

3x3

out

MP

normal

cell
in

1x1

3x3

out

MP

normal

cell

in

MP

1x1

out

1x1

in

MP

1x1

out

1x1

reduction

cell
in

MP

1x1

out

1x1

reduction

cell

in MP 3x3 1x1 out in MP 3x3 1x1 out

adjacency

matrix

vertex type

matrix

0 1 1 0 0

0 0 0 1 0

10 0 0 1

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

00 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

00 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 1 0 1

0 0 0 1 0

10 0 0 0

0 0 0 0 1

0 0 0 0 0

reduction

cell

normal

cell

reduction

cell

normal

cell
×N

normal

cell
×N

normal

cell
×N

reduction

cell
convimage

global

avg. pool

task-aware

header

architecture

in

1x1

3x3

out

MP

normal

cell

in

MP

1x1

out

1x1

reduction

cell

in MP 3x3 1x1 out in MP 3x3 1x1 out

adjacency

matrix

vertex type

matrix

adjacency

matrix

vertex type

matrix
in MP 3x3 1x1MP 3x3 1x1 outin MP 3x3 1x1MP 3x3 1x1 out

0 1 1 0 1

0 0 0 1 0

00 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 0 0 0

0 0 0 0 0

00 0 0 0

0 0 1

0 0 1

0 0 0

0 1 1 0 1

0 0 0 1 0

00 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 0 0 0

0 0 0 0 0

00 0 0 0

0 0 1

0 0 1

0 0 0

adjacency

matrix

vertex type

matrix
in MP 3x3 1x1MP 3x3 1x1 out

0 1 1 0 1

0 0 0 1 0

00 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 0 0 0

0 0 0 0 0

00 0 0 0

0 0 1

0 0 1

0 0 0

cell

3x3 conv
1x1 conv
Max Pooling

cell

3x3 conv
1x1 conv
Max Pooling

in

1x1

3x3

outMP

1x1

MP

3x3

cell

in

1x1

3x3

outMP

1x1

MP

3x3

cell

cell

3x3 conv
1x1 conv
Max Pooling

in

1x1

3x3

outMP

1x1

MP

3x3

cell

adjacency

matrix

vertex type

matrix
in MP 3x3 1x1MP 3x3 1x1 out

0 1 1 0 1

0 0 0 1 0

00 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 0 0 0

0 0 0 0 0

00 0 0 0

0 0 1

0 0 1

0 0 0

cell

3x3 conv
1x1 conv
Max Pooling

in

1x1

3x3

outMP

1x1

MP

3x3

cell

Figure 6: The conversion and representation of operation-on-vertex
search space.

B Experimental Setups
We randomly sample the architectures from the whole search
space for pre-training. For training and fine-tuning, we use a
specified number of training samples as the training set and
randomly sample 10000 architectures as the validation set.
During training and fine-tuning in NAS-Bench-301, we pre-
sample 100000 architectures as the sampling space. Other
training setups are as follows.
Pre-training. The setups of pre-training in NAS-Bench-
101 and NAS-Bench-301 (DARTS) search spaces are demon-
strated as in Table 3.

Hyper-parameters NAS-Bench-101 NAS-Bench-301
(DARTS)

batch size 2048 4096
iterations 10000 10000

lr 0.0001 0.001
lr schedule cosine cosine

weight decay 0.0 0.0
dropout 0.0 0.2

masking ratio 0.75 0.05
optimizer AdamW AdamW

layers 16 12
model dims 32 32
activation prelu prelu

base model GAT GAT

Table 3: The setups of pre-training in NAS-Bench-101 and NAS-
Bench-301 (DARTS) search spaces.

Training from scratch. The setups of training from scratch
in NAS-Bench-101 and NAS-Bench-301 (DARTS) search
spaces are demonstrated as in Table 4.

Hyper-parameters NAS-Bench-101 NAS-Bench-301
(DARTS)

epochs 75 75
steps pre epoch 10 10

criterion bpr bpr
lr (encoder) 0.01 0.01
lr (predictor) 0.01 0.01
lr schedule cosine cosine

weight decay 0.0001 0.001
child-tuning reserve 0.5 0.8
child-tuning mode F D
dropout (encoder) 0.2 0.1
dropout (predictor) 0.2 0.1

optimizer AdamW AdamW
layers 16 12

model dims 32 32
activation prelu prelu

base model GAT GAT

Table 4: The setups of training from scratch and partial fine-tuning
in NAS-Bench-101 and NAS-Bench-301 (DARTS) search spaces.

Partial fine-tuning. The setups of partial fine-tuning NAS-
Bench-101 and NAS-Bench-301 (DARTS) search spaces are
the same as the setups of training from scratch, as shown in
Table 4. But we freeze the parameters of the encoder.

End-to-end fine-tuning. The setups of end-to-end fine-
tuning in NAS-Bench-101 and NAS-Bench-301 (DARTS)
search spaces are demonstrated as in Table 5.

Hyper-parameters NAS-Bench-101 NAS-Bench-301
(DARTS)

epochs 100 25
steps pre epoch 10 10

criterion bpr bpr
lr (encoder) 0.001 0.001
lr (predictor) 0.01 0.001
lr schedule cosine cosine

weight decay 0.001 0.01
child-tuning reserve 0.5 1.0
child-tuning mode D D
dropout (encoder) 0.1 0.0
dropout (predictor) 0.1 0.5

optimizer AdamW AdamW
layers 16 12

model dims 32 32
activation prelu prelu

base model GAT GAT

Table 5: The setups of end-to-end fine-tuning in NAS-Bench-101
and NAS-Bench-301 (DARTS) search spaces.

Search. The setups of search in NAS-Bench-101 and NAS-
Bench-301 (DARTS) search spaces are demonstrated as in
Table 6.

Hyper-parameters NAS-Bench-101 NAS-Bench-301
(DARTS)

N 150 100
N0 20 20
K 10 10
C 100 100
M 1 1
ϕ ITS ITS

Table 6: The setups of search in NAS-Bench-101 and NAS-Bench-
301 (DARTS) search spaces. ITS denotes Independent Thompson
sampling (ITS) acquisition function.

C Best Discovered Architecture on the Actual
NAS Task

Figure 7 shows our best discovered architecture on the actual
NAS task.

c_{k-2}

0

sep_conv_3x3 3
sep_conv_3x3

c_{k-1} sep_conv_5x5
1skip_connect

sep_conv_5x5
2

dil_conv_3x3
c_{k}

sep_conv_5x5

sep_conv_3x3

(a) Normal cell of GMAE-NAS (AE).

c_{k-2}

0
avg_pool_3x3

1
sep_conv_5x5

2sep_conv_3x3

3
sep_conv_3x3

c_{k-1}
avg_pool_3x3

avg_pool_3x3

avg_pool_3x3

c_{k}

dil_conv_5x5

(b) Reduction cell of GMAE-NAS (AE).

c_{k-2}

0

sep_conv_3x3

1

sep_conv_3x3

2

sep_conv_3x3

c_{k-1}

sep_conv_5x5

skip_connect

avg_pool_3x3

3
sep_conv_3x3

c_{k}

sep_conv_3x3

(c) Normal cell of GMAE-NAS (BO).

c_{k-2} 0
avg_pool_3x3

1
sep_conv_5x5

2dil_conv_3x3

3
dil_conv_3x3

c_{k-1}

avg_pool_3x3

avg_pool_3x3

sep_conv_3x3

sep_conv_3x3

c_{k}

(d) Reduction cell of GMAE-NAS (BO).

Figure 7: The best discovered architecture on the actual NAS task.

D Training the Discovered Architecture on
CIFAR-10

We train the quired architecture and the discovered architec-
tures on the CIFAR-10 dataset strictly following the hyperpa-
rameter setup of DARTS [Liu et al., 2019]. The setups are
shown in Table 7.

Hyper-parameters Search Evaluation

batch size 96 96
lr 0.025 0.025

momentum 0.9 0.9
weight decay 0.0003 0.0003

epochs 50 600
init channels 32 36

layers 8 20
auxiliary 0.4 0.4

cutout 16 16
drop path prob 0.2 0.2

grad clip 5.0 5.0

Table 7: The setups of training in search and evaluation process.

	Introduction
	Related Work
	Method
	Architecture Space
	Encoder
	Decoder
	Pre-Training
	Fine-Tuning
	Search

	Experiments
	Predictor Evaluation
	Search Evaluation
	Ablation Study
	Choice of Pre-Training Methods
	Choice of Masking Ratios
	Choice of Objective Functions
	Choice of Models
	Choice of Fine-Tuning Targets
	Choice of Fine-Tuning Modes

	Conclusion
	Conversion to Operation-On-Vertex Search Space
	Experimental Setups
	Best Discovered Architecture on the Actual NAS Task
	Training the Discovered Architecture on CIFAR-10

