
Neural Networks 158 (2023) 111–120

U

n
i
s
f
L
n
r
a
T
Z
D
m
s

b
w
H
2
s
l

c

h
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

An architecture entropy regularizer for differentiable neural
architecture search
Kun Jing, Luoyu Chen, Jungang Xu ∗

niversity of Chinese Academy of Sciences, Huaibei Town, Huairou District, Beijing, 101408, China

a r t i c l e i n f o

Article history:
Received 13 September 2021
Received in revised form 29 August 2022
Accepted 9 November 2022
Available online 16 November 2022

Keywords:
Differentiable architecture search
Matthew effect
Discretization discrepancy
Architecture entropy regularizer

a b s t r a c t

Differentiable architecture search (DARTS) is one of the prevailing paradigms of neural architecture
search (NAS) due to allowing efficient gradient-based optimization during the search phase. However,
its poor stability and generalizability are intolerable. We argue that the crux is the locally optimal
architecture parameter caused by a dilemma, which is that the solutions to the Matthew effect and
discretization discrepancy are inconsistent. To escape from the dilemma, we propose an architecture
entropy to measure the discrepancy of the architecture parameters of different candidate operations
and use it as a regularizer to control the learning of architecture parameters. Extensive experiments
show that an architecture entropy regularizer with a negative or positive coefficient can effectively
solve one side of the contradiction respectively, and the regularizer with a variable coefficient can
relieve DARTS from the dilemma. Experimental results demonstrate that our architecture entropy
regularizer can significantly improve different differentiable NAS algorithms on different datasets and
different search spaces. Furthermore, we also achieve more accurate and more robust results on
CIFAR-10 and ImageNet. The code is publicly available at https://github.com/kunjing96/DARTS-AER.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Neural architecture search (NAS) has emerged as a promi-
ent approach to automatic architecture design, which takes an
mportant step in deep learning. Early NAS algorithms search
traightforwardly in the discrete architecture space through rein-
orcement learning (Zoph & Le, 2017; Zoph, Vasudevan, Shlens, &
e, 2018) and evolutionary algorithm (Liu, Simonyan, Vinyals, Fer-
ando, & Kavukcuoglu, 2018; Real et al., 2017). These algorithms
equire massive computing resources because training candidate
rchitectures from scratch is a computing resource-intensive task.
he introduction of the weight-sharing technique (Pham, Guan,
oph, Le, & Dean, 2018) reduces the search cost. Based on it,
ARTS (Liu, Simonyan, & Yang, 2019) further builds a continuous
ixture of architectures and relaxes the categorical architecture
earch problem to learn differentiable architecture parameters.
Although DARTS has high computational efficiency, it has

een criticized for its poor stability and generalizability. Some
orks (Chen, Xie, Wu, & Tian, 2019; Chu, Zhou, Zhang, & Li, 2020;
ong et al., 2020; Li, Zhang, Wang, Li, & Zhang, 2019; Liang et al.,
019; Zheng et al., 2020) found two problems leading to the poor
tability and generalization of DARTS: the rich-get-richer and the
arge gap between search and evaluation scenarios (described in

∗ Corresponding author.
E-mail addresses: jingkun18@mails.ucas.ac.cn (K. Jing),

henluoyu19@mails.ucas.ac.cn (L. Chen), xujg@ucas.ac.cn (J. Xu).
ttps://doi.org/10.1016/j.neunet.2022.11.015
893-6080/© 2022 Elsevier Ltd. All rights reserved.
Section 3). Meanwhile, many improvements are proposed and
proved to be effective, including gradually pruning (Chen et al.,
2019; Li et al., 2019; Zheng et al., 2020), pre-training before
search (Chen et al., 2019), candidate operation grouping (Hong
et al., 2020; Li et al., 2019), early stopping (Chu, Zhou et al.,
2020; Liang et al., 2019), and restricting the number of skip
connections (Chen et al., 2019; Chu, Zhou et al., 2020; Liang et al.,
2019). However, the locally optimal architecture parameters is
the crux of the problems, which is not solved in these works. The
reasons may include: (1) they do not realize that these solutions
to the two problems are inconsistent, i.e., the requirements of
fair training (solution to problem 1) and high self-confidence
selection (solution to problem 2) for architecture parameters are
contradictory, where the former requires the entropy of architec-
ture parameters to be as large as possible and the latter expects
the entropy of architecture parameters to be as small as possible;
(2) they do not directly improve the learning of architecture
parameters but indirectly remedy the learning process.

In this work, we redefine these two problems as the Matthew
effect and discretization discrepancy and argue that the failure
of architecture parameters learning is the fundamental cause
of these two problems. To control the learning of architecture
parameters, we define the average of the entropy of the nor-
malized architecture parameters for all edges in the cell as the
architecture entropy and propose an architecture entropy regu-
larizer with a negative or positive coefficient, which can alleviate
the Matthew effect (negative) and the discretization discrepancy

https://doi.org/10.1016/j.neunet.2022.11.015
https://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2022.11.015&domain=pdf
mailto:jingkun18@mails.ucas.ac.cn
mailto:chenluoyu19@mails.ucas.ac.cn
mailto:xujg@ucas.ac.cn
https://doi.org/10.1016/j.neunet.2022.11.015

K. Jing, L. Chen and J. Xu Neural Networks 158 (2023) 111–120

s
s

Fig. 1. The scheduling of architecture entropy regularizer coefficient during the
earch phase. The red area (the left of dashed line) indicates that in the early
tage, the regularizer coefficient increases from λneg to 0, gradually slowing
down the restrictions on the dominant expression of candidate operation. The
green area (the right of dashed line) indicates that in the later stage, the
regularizer coefficient increases from 0 to λpos , gradually enhancing the rewards
on the dominant expression of candidate operation. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

(positive) respectively. Through observing their effects on search-
ing at different stages, we achieve a trade-off in the dilemma by
scheduling the regularizer coefficient from negative to positive
during the search phase, as shown in Fig. 1.

Extensive experiments prove that an architecture entropy
regularizer with a negative or positive coefficient can effec-
tively solve the Matthew effect and discretization discrepancy
respectively. Meanwhile, the regularizer with a variable coef-
ficient relieves DARTS from a dilemma. We give a scheduling
method for regularizer coefficient through ablation experiments.
Furthermore, we adapt our regularizer into several differentiable
NAS algorithms on different datasets and different search spaces,
achieving significant improvements, i.e., higher accuracy and
better robustness. We report the best and average errors of our
searched architectures in different runs with different seeds in
Tables 2 and 3. The best architecture achieves 2.49% test error on
CIFAR-10 and 24.0% top-1 error when transferred to ImageNet,
which are highly competitive results.

Our contributions can be summarized as follows:

• We argue that the failure of architecture parameters learn-
ing is the fundamental cause of the Matthew effect and
discretization discrepancy for DARTS. And we introduce the
architecture entropy to measure the discrepancy of the ar-
chitecture parameters of different candidate operations.

• We propose an architecture entropy regularizer, which
avoids the unfair learning of network parameters caused
by the Matthew effect in the early search phase and the
performance drop caused by discretization discrepancy after
the search phase. It can be easily adapted in different differ-
entiable NAS algorithms with extremely little cost of time
and memory.

• Extensive experiments and ablation studies prove that our
architecture entropy regularizer can significantly improve
different differentiable NAS algorithms on different datasets
and different search spaces. We report the best architec-
ture we discovered and its competitive results on CIFAR-10
and ImageNet. The code is available at https://github.com/
kunjing96/DARTS-AER.
112
2. Related work

Since DARTS (Liu et al., 2019) is proposed, the differentiable
methods have been the mainstream of neural architecture search.
Many researchers proposed the same defects of DARTS as ours.
They also suggested many amazing improvements for these prob-
lems. PDARTS (Chen et al., 2019) gradually increases the network
depth during the search phase (totally 3 stages) to alleviate a
significant optimization gap that is caused by the different prop-
erties of the search and evaluation phases. This gap is also known
as discretization discrepancy, which makes the architecture pa-
rameters overfit the super-network. For each stage of PDARTS,
only network parameters are tuned in the first 10 epochs while
both network and architecture parameters are jointly optimized
in the rest 15 epochs, which alleviates the rich-get-richer prob-
lem. FairNAS (Chu, Zhang, & Xu, 2021) and Fair DARTS (Chu, Zhou
et al., 2020) also found the Matthew effect in DARTS, which was
called the unfair training or the unfair advantage in an exclu-
sive competition. They argue that the unfair advantage makes
DARTS suffer from well-known performance collapse. Besides,
other works (Hong et al., 2020; Li et al., 2019; Liang et al., 2019;
Yu, Sciuto, Jaggi, Musat, & Salzmann, 2020; Zheng et al., 2020)
came up with similar proposals as well. Although observing the
same findings as them, we argue that the solutions to these two
problems are inconsistent, and propose an easier way to escape
from the dilemma.

Implicit and explicit regularization methods have been widely
used in NAS. For example, in order to search for efficient neu-
ral architecture, extensive researches (Cai, Zhu, & Han, 2019;
Green, Vineyard, Helinski, & Koç, 2020; Wu et al., 2019; Xie,
Zheng, Liu, & Lin, 2019; Zhang, Yang, Jiang, Zhu, & Liu, 2020)
regard forwarding time or occupied hardware resources of the
child network as a regularizer in the search objective, which
adjusts the sizes of the searched architectures through the reg-
ularizer coefficient. SmoothDARTS (Chen & Hsieh, 2020) pro-
poses a perturbation-based regularization to smooth the loss
landscape and improves the generalizability of differentiable NAS
algorithms. RDARTS (Zela et al., 2020) shows that properly regu-
larizing the inner objective (e.g., regularization via data augmen-
tation and L2 regularization) can help to control the eigenvalues
of the Hessian matrix of the validation loss and therefore im-
proves generalization. Besides, there are many implicit regular-
izations (Chu, Zhang, & Li, 2020; Chu, Zhou et al., 2020; Liang
et al., 2019; Zela et al., 2020), including early stopping, adding
noise, and restricting the number of skip connections.

In particular, we also find that the two related works (Ferianc,
Fan, & Rodrigues, 2020; Gao et al., 2020) also use a regularizer
similar to our proposal. MTL-NAS (Gao et al., 2020) proposes
a single-shot gradient-based search algorithm, which closes the
performance gap between the searched architectures and the fi-
nal evaluation architecture by a minimum entropy regularization
on the architecture weights during the search phase. This makes
the architecture weights converge to near-discrete values. As a
result, the searched model can be directly used for evaluation
without (re-)training from scratch. VINNAS (Ferianc et al., 2020)
presents a differentiable variational inference-based NAS method
for searching sparse convolutional neural networks by gradually
removing unnecessary operations and connections. To achieve a
high level of certainty in the selection of operations, they mini-
mize the joint entropy across the potential operations. Although
we also use the entropy of architecture parameters as the regular
term in the search process, we aim to solve the above dilemma
of the Matthew effect and discretization discrepancy. Specifically,
we define the average entropy of all architecture parameters
as architecture entropy, argue that architecture entropy regular-
izer has two effects, and regularize the learning of architecture

parameters in different ways during different search stages.

https://github.com/kunjing96/DARTS-AER
https://github.com/kunjing96/DARTS-AER
https://github.com/kunjing96/DARTS-AER

K. Jing, L. Chen and J. Xu Neural Networks 158 (2023) 111–120

3

3

t
r
n
N
e

s

b
f

b

f

r
S
t

t

t
l
t
m

. Escaping from dilemma

.1. Differentiable architecture search

We follow the DARTS framework (Liu et al., 2019), which aims
o search for two types of cells (including a normal cell and a
eduction cell) that can be stacked to form the optimal target
etwork. Each cell is defined as directed acyclic graph (DAG) of
nodes, where each node x(i) is a latent representation and each

dge (i, j) is associated with a set of candidate operations o(i,j). We
denote the candidate operation space as O, which is exactly the
ame as the original DARTS setting.
DARTS relaxes the discrete search space to be continuous

y a weighted sum of all candidate operations, which can be
ormulated as

ō(i,j)(x(i)) =

∑
o∈O

p(i,j)o · o(i,j)(x(i)),

where p(i,j)o =
exp(α(i,j)

o)∑
o′∈O exp(α(i,j)

o′)
. (1)

The architecture weight p(i,j) for an edge (i, j) is parameterized
y a vector (called architecture parameter) α(i,j) of dimension

|O|. Intuitively, the architecture parameter α(i,j) represents the
relative contribution of the operation o(i,j) for transforming the
eature map x(i).

After the relaxation, the task of neural architecture search then
educes to learning a set of continuous variables α = {α(i,j)

}.
pecifically, DARTS formulates the jointly learning of the archi-
ecture parameters α and the network parameters ω within all
the mixed operations as a bi-level optimization problem:

min
α

Lval(ω∗(α), α)

s.t. ω∗(α) = argminω Ltrain(ω, α). (2)

DARTS approximates ω∗(α) by adapting ω using only a single
gradient descent step and updates ω and α alternatively using
he training and validation set respectively.

At the end of search, we can derive the final searched archi-
ecture by (1) replacing each mixed operation ō(i,j) with the most
ikely operation o(i,j) = argmaxo∈O,o̸=zerop

(i,j)
o and (2) retaining

wo edges from different predecessor nodes with the largest
axo∈O,o̸=zero p

(i,j)
o for each intermediate node.

3.2. Dilemma of differentiable architecture search

Observing the search process of DARTS and its discovered ar-
chitecture, we discover that two problems make DARTS perform
poorly, i.e., the Matthew effect and discretization discrepancy.

Matthew effect. We check the search process of DARTS and the
discovered architectures and find that at the beginning of the
search, the non-parameterized operations often perform bet-
ter because the parameterized operations have not learned any
knowledge. Besides, some candidate operations may learn to
express the desired functions more quickly. This makes them
learn larger architecture weights and gain larger gradients of
network parameters, which accelerates the parameter update of
the correlative operations. It is a vicious circle that the prema-
ture dominant expression can cause unfair training and further
strengthen the dominant expression, thus ignoring the expression
of these disadvantaged operations at the beginning. This phe-
nomenon is summarized as the rich-get-richer, also known as the
Matthew effect.
113
Discretization discrepancy. During the search phase of DARTS,
continuous architecture parameters α are used for the relaxation.
However, they have to be discretized to derive the searched
architecture eventually. This requires that a better mixture of
architectures implies a better final architecture, but it is not
the case. We observe that there is always a large performance
discrepancy in the final discretization phase of DARTS. In other
words, the validation error reduction of the mixture of architec-
tures is not always related to the validation error reduction of
the final architecture. At the end of the search, the architecture
weight seriously deviating from the one-hot vector we expect
causes this phenomenon, named discretization discrepancy.

To alleviate the Matthew effect, we expect that the archi-
tecture weight p(i,j)o for each candidate operation of edge (i, j)
can be close enough so that their network parameters can be
updated using fair gradients. But for relieving the discretization
discrepancy, we require each architecture weight vector to be
a one-hot vector, making the architecture weight of a certain
candidate operation prominent, i.e., the dominant expression.
These two aspects make DARTS into a dilemma.

3.3. Architecture entropy regularizer

In information theory, entropy is the measurement of un-
certainty. With the decrease of entropy, random events become
more definite. Naturally, we use entropy H(α(i,j)) = −

∑
o∈O p(i,j)o ·

log2 p
(i,j)
o to measure the discrepancy of the architecture parame-

ters α
(i,j)
o for different candidate operations of each edge (i, j). We

define the mean entropy H̄(α) =
1
N

∑
(i,j) H(α(i,j)) of all edges as

the architecture entropy, which reflects the learning of the whole
architecture parameters.

Furthermore, we introduce the architecture entropy regular-
izer (AER) to control the learning of architecture parameters.
Therefore, the bi-level optimization of NAS is rewritten as

min
α

Lval(ω∗(α), α) + λ · H̄(α)

s.t. ω∗(α) = argminω Ltrain(ω, α). (3)

3.3.1. Two effects
Obviously, the optimization defined by DARTS in Formula (2)

is a special case of our definition in Formula (3). When λ = 0, the
optimization is equivalent to the definition of DARTS. As shown
in Figs. 2 and 3, our architecture entropy regularizer can achieve
two different effects by the different setups of its coefficient.

When the coefficient λ < 0, the architecture parameters are
learned in the direction of increasing architecture entropy, as
shown in Fig. 6(a). In particular, the architecture entropy is large
initially because the architecture parameters of the candidate
operations are randomly initialized with Gaussian distribution.
Therefore, it is hard to increase, but remains unchanged or slowly
declines as far as possible. Compared with Row 1 (λ = 0) and
Row 2 (λ < 0) in Fig. 2, the weights of different candidate
operations of the latter are closer. All the candidate operations
are treated fairly, which alleviates the Matthew effect. Compared
with Column 1 (λ = 0) and Column 2 (λ < 0) in Fig. 3, after
alleviating the Matthew effect, we can gain a better evaluation
ranking with higher Kendall τ and lower average error.

When the coefficient λ > 0, the architecture parameters are
learned in the direction of decreasing architecture entropy, as
shown in Fig. 6(a). This accelerates the dominant expression of
the optimal candidate operation and improves the search effi-
ciency. On the other hand, at the end of searching as shown in
Row 3 of Fig. 2, the architecture weight p(i.j) of each edge (i, j) will

K. Jing, L. Chen and J. Xu Neural Networks 158 (2023) 111–120

e
F

t
s

b
d
(
i
A
o
(

Fig. 2. Architecture weight evolutions during the search phase with different regularizer coefficients λ(t). Due to the limited space, we just show the evolutions on
dge of even index for one run. Row 1: λ(t) = 0 (DARTS). Row 2: λ(t) = −0.2. Row 3: λ(t) = 0.2. Row 4: λ(t) changes from −0.2 to 0.2 with epochs following
ig. 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
w
o
t
i
e

3

l
p

4

2

Fig. 3. The search-evaluation architecture rankings for different ways of regu-
larizer coefficient λ(t) scheduling. We show Kendall τ correlations and average
est error on CIFAR-10. Architectures are obtained from 10 independent runs of
earch and evaluation with different seeds.

e closer to the one-hot vector, which indicates less discretization
iscrepancy. Compared with Column 1 (λ = 0) and Column 3
λ > 0) in Fig. 3, we can also gain a better evaluation. However,
t aggravates the Matthew effect in the early stage of the search.
s shown in Row 3 (λ > 0) of Fig. 2, the dominant expression
f candidate operations becomes more significant than Row 1
λ = 0) in the early stage of the search.
114
3.3.2. Regularizer coefficient scheduling
We expect a later dominant expression for the Matthew effect

and an earlier dominant expression for discretization
discrepancy, which are completely contradictory. For the trade-
off in the dilemma, we propose that the architecture parameters
are learned to prevent the dominant expression in the early
search stage and promote the dominant expression in the later
search stage by scheduling the regularizer coefficient λ(t) as
shown in Fig. 1. The regularizer coefficient λ(t) increases from
λneg to λpos following a cosine schedule, where λneg and λpos are
negative and positive respectively. The optimization formula is
rewritten as

min
α

Lval(ω∗(α), α) + λ(t) · H̄(α)

s.t. ω∗(α) = argminω Ltrain(ω, α). (4)

As shown in Row 4 of Fig. 2, when λ changes from λneg to λpos
ith the training epochs, each architecture weight tends to be the
ne-hot vector from the initial balanced state. Fig. 3 shows that
he regularizer with the coefficient scheduling can significantly
mprove the evaluation ranking. The scheduling is proved to be
ffective by extensive experiments in Section 4.

.4. Search algorithms

The optimization algorithm is described in Algorithm 1. Fol-
owing DARTS, we update architecture parameters α and network
arameters ω alternately.

. Experiments

We conduct experiments on one NAS benchmark NAS-Bench-
01 (Dong & Yang, 2020) and two popular image classification

K. Jing, L. Chen and J. Xu Neural Networks 158 (2023) 111–120

p
t
a
m
i
&
H

Table 1
Comparison of different algorithms on NAS-Bench-201. The first block shows results of parameter sharing based NAS methods provided by the
benchmark.

Algorithm Cost CIFAR-10 Acc (%) CIFAR-100 Acc (%) ImageNet16-120 Acc (%)

(s) Validation Test Validation Test Validation Test

RSPSa 8007 80.42 ± 3.58 84.07 ± 3.61 52.12 ± 5.55 52.31 ± 5.77 27.22 ± 3.24 26.28 ± 3.09
DARTS-V1a 11625 39.77 ± 0.00 54.30 ± 0.00 15.03 ± 0.00 15.61 ± 0.00 16.43 ± 0.00 16.32 ± 0.00
DARTS-V2a 35781 39.77 ± 0.00 54.30 ± 0.00 15.03 ± 0.00 15.61 ± 0.00 16.43 ± 0.00 16.32 ± 0.00
GDASa 31609 89.89 ± 0.08 93.61 ± 0.09 71.34 ± 0.04 70.70 ± 0.30 41.59 ± 1.33 41.71 ± 0.98
SETNa 34139 84.04 ± 0.28 87.64 ± 0.00 58.86 ± 0.06 59.05 ± 0.24 33.06 ± 0.02 32.52 ± 0.21
ENASa 14058 37.51 ± 3.19 53.89 ± 0.58 13.37 ± 2.35 13.96 ± 2.33 15.06 ± 1.95 14.84 ± 2.10

DARTS-V1a 11668 39.77 ± 0.00 54.30 ± 0.00 15.03 ± 0.00 15.61 ± 0.00 16.43 ± 0.00 16.32 ± 0.00
DARTS-V1-AERa 11699 73.88 ± 7.91 76.68 ± 8.15 46.42 ± 11.11 46.53 ± 10.69 24.78 ± 8.36 24.48 ± 8.57
DARTS-V1b 25031 77.69 ± 6.65 79.75 ± 6.24 49.24 ± 7.54 49.42 ± 7.29 24.40 ± 3.91 23.54 ± 3.62
DARTS-V1-AERb 24174 82.39 ± 0.00 84.16 ± 0.00 54.57 ± 0.00 54.64 ± 0.00 27.17 ± 0.00 26.10 ± 0.00
DARTS-V1c 62041 83.65 ± 2.84 85.90 ± 3.24 56.51 ± 5.35 57.21 ± 5.12 29.03 ± 5.70 27.73 ± 4.66
DARTS-V1-AERc 63051 85.44 ± 0.95 87.98 ± 0.91 60.13 ± 2.05 60.22 ± 1.49 32.83 ± 1.07 31.14 ± 1.20
DARTS-V2a 33298 39.77 ± 0.00 54.30 ± 0.00 15.03 ± 0.00 15.61 ± 0.00 16.43 ± 0.00 16.32 ± 0.00
DARTS-V2-AERa 36992 68.29 ± 0.00 70.92 ± 0.00 38.57 ± 0.00 38.97 ± 0.00 18.87 ± 0.00 18.42 ± 0.00
DARTS-V2b 65746 68.29 ± 0.00 70.92 ± 0.00 38.57 ± 0.00 38.97 ± 0.00 18.87 ± 0.00 18.41 ± 0.00
DARTS-V2-AERb 67643 83.45 ± 1.15 85.47 ± 1.94 56.73 ± 3.60 57.07 ± 3.15 29.52 ± 3.20 28.38 ± 3.12
DARTS-V2c 177515 83.86 ± 1.14 86.58 ± 1.75 58.43 ± 2.89 58.71 ± 2.84 30.67 ± 2.76 30.03 ± 3.14
DARTS-V2-AERc 177821 85.37 ± 1.20 87.51 ± 1.35 59.90 ± 2.80 60.14 ± 2.61 31.20 ± 2.46 30.21 ± 2.83
GDASa 31502 90.01 ± 0.10 93.57 ± 0.15 71.12 ± 0.35 70.73 ± 0.25 41.16 ± 0.71 42.22 ± 0.29
GDAS-AERa 34072 89.71 ± 0.04 93.46 ± 0.21 70.42 ± 0.50 71.09 ± 0.26 40.39 ± 0.17 41.54 ± 0.70
GDASb 62274 88.57 ± 0.12 92.23 ± 0.07 67.34 ± 0.37 67.33 ± 0.10 39.22 ± 0.03 39.28 ± 0.41
GDAS-AERb 64633 89.38 ± 0.03 92.82 ± 0.51 69.21 ± 0.30 69.78 ± 0.41 41.89 ± 1.16 42.12 ± 0.53
GDASc 161535 89.91 ± 0.03 93.50 ± 0.23 70.81 ± 0.79 70.67 ± 0.34 40.47 ± 0.27 40.64 ± 0.54
GDAS-AERc 172525 90.17 ± 0.16 93.37 ± 0.07 70.15 ± 0.86 70.35 ± 0.41 42.12 ± 1.63 42.26 ± 1.20

aThe last three blocks show the our results of DARTS (with first-order and second-order approximation, marked by V1 and V2 respectively) and
GDAS on three different datasets (CIFAR-10).
bThe last three blocks show the our results of DARTS (with first-order and second-order approximation, marked by V1 and V2 respectively) and
GDAS on three different datasets (CIFAR-100).
cThe last three blocks show the our results of DARTS (with first-order and second-order approximation, marked by V1 and V2 respectively) and
GDAS on three different datasets (ImageNet16-120).
Our architecture entropy regularizer is used for their search (marked by AER, i.e., DARTS-V1-AER, DARTS-V2-AER, and GDAS-AER). We report the
mean and standard deviation of accuracies of 3 runs. The search cost is converted to the search cost on a single GeForce GTX 1080 Ti GPU so that
it can be compared with the results provided by NAS-Bench-201.
Algorithm 1 Differentiable Architecture Search with Architecture
Entropy Regularizer
Create a mixed operation ō(i,j) parameterized by α(i,j) for each
edge (i, j)
while not converged do

Update architecture α by descending

∇αLval(ω − ξ∇ωLtrain(ω, α), α) + λ(t) · H̄(α)

(ξ = 0 if using first-order approximation)
Update weights ω by descending

∇ωLtrain(ω, α)

end while
Derive the final architecture based on the learned α

datasets, i.e., CIFAR-10 (Krizhevsky & Hinton, 2009) and Ima-
geNet (Deng et al., 2009).

4.1. Experiments on NAS-Bench-201

NAS-Bench-201. NAS-Bench-201 (Dong & Yang, 2020) is a
urpose-built benchmark for prototyping NAS algorithms. It con-
ains 15,625 CNN models from a fixed cell-based search space
nd corresponding detailed training log (including performance
etrics and diagnostic information) on three different datasets,

.e., CIFAR-10 (Krizhevsky & Hinton, 2009), CIFAR-100 (Krizhevsky
Hinton, 2009), and ImageNet16-120 (Chrabaszcz, Loshchilov, &
utter, 2017).
115
Implementation details. To verify our method on the different
search spaces, we conduct experiments based on two typical NAS
algorithms, i.e., DARTS (Liu et al., 2019) and GDAS (Dong & Yang,
2019), on the NAS-Bench-201 search space. In the search phase,
we directly use the code provided by NAS-Bench-201 (Dong &
Yang, 2020). Then we obtain the training information of the
architectures from the look-up table in NAS-Bench-201. All exper-
imental configurations exactly follow the corresponding works
(Dong & Yang, 2019, 2020; Liu et al., 2019). We run each al-
gorithm three times. All experiments are run on a single Tesla
V100.

Results analysis. As shown in Table 1, the performances of our
DARTS-AER discovered architectures on the three datasets are
significantly better than those of the original DARTS. In the third
block, the most remarkable row is DARTS-V1-AER when searching
on CIFAR-10, where the test accuracies of the three datasets
are improved by 22.38%, 30.92%, 8.61% respectively. Meanwhile,
although our GDAS-AER does not perform well on CIFAR-10, its
discovered architectures have the higher accuracies when search-
ing on CIFAR-100 and ImageNet with lower standard deviation.
Our GDAS-AER algorithm achieves the best 42.26% average test
accuracy on ImageNet. This demonstrates our proposed archi-
tecture entropy regularizer helps DARTS (first-order and second-
order) and GDAS algorithms to find those better architectures and
improves them to be more robust. Experimental results confirm
our architecture entropy regularizer can improve different dif-
ferentiable NAS algorithms to perform better on different search
spaces and different datasets.

K. Jing, L. Chen and J. Xu Neural Networks 158 (2023) 111–120

T
p
t
p
s

4
I
w
i
t
a
a
h
c
n
D
c
a
3
w
0
g
e

R
s
P
O
a
s
t
d
P
s
c
t
d
u
w
r
h
e
a
i

Fig. 4. The discovered architectures on CIFAR-10. (normal) denotes the normal cell of these architectures; (reduction) denotes the reduction cell of these architectures.
4
I
u
T
6
e
d
0
o
s
c
e
r

R
D
a
c
o
P
d
b
i
p
a
t
a
t
t
m

4
I
s
w
n
t
w
i
c
p
i
O
A

R
a
i

4.2. Experiments on CIFAR-10

CIFAR-10. CIFAR-10 (Krizhevsky & Hinton, 2009) has 50K/10K
training/testing images with a fixed spatial resolution of 32 × 32.
hese images are equally distributed over 10 classes. In the search
hase, the training set is equally split into two subsets, one for
uning network parameters and the other for tuning architecture
arameters. In the evaluation phase, the standard training/testing
plit is used.

.2.1. Architecture search
mplementation details. To verify the validity of our method,
e conduct experiments based on two typical NAS algorithms,

.e., DARTS (Liu et al., 2019) and PDARTS (Chen et al., 2019). In
he search phase, we directly use their approaches except for
dding our architecture entropy regularizer. Since we use DARTS
nd PDARTS as the backbone algorithm, the search space and
yperparameter settings are exactly the same as theirs for a fair
omparison. Both of them aim to search for two types of cells, a
ormal cell and a reduction cell. The cells are represented by a
AG of 7 nodes with each edge having 8 candidate operations,
onsisting of 3 × 3 and 5 × 5 separable convolutions, 3 × 3
nd 5 × 5 dilated separable convolutions, 3 × 3 max pooling,
× 3 average pooling, identity, and zero. In the search phase,
e set |λneg | = |λpos| = 0.2, i.e., λneg = −0.2 and λpos =

.2. The ablation study in Section 4.4.2 shows that this is a
ood scheduling way. We run each algorithm three times. All
xperiments are run on a single Tesla V100.

esults analysis. Our discovered architectures on CIFAR-10 are
hown in Fig. 4. Compared to the cells discovered by DARTS and
DARTS, there are some distinct differences in our architectures.
ne difference is that our architectures are shallower than DARTS
nd PDARTS. Another difference is that our algorithm prefers to
elect 3 × 3 average pooling instead of 3 × 3 max pooling in
he reduction cell. Besides, as shown in Table 2, our algorithm
iscovers architectures with fewer parameters than DARTS and
DARTS. We argue that we can discover the architecture with
hallower depth and fewer parameters because the search is
arried out on the small dataset CIFAR-10 without considering
ransferability and this architecture can meet the needs of small
atasets. We think that increasing the depth of cells is not always
seful. Although, the depth of network is positively correlated
ith the model expression ability to a certain extent, it cannot
eflect the generalization performance given a dataset and a set of
yper-parameters. Our shallower architectures also achieve lower
rrors over different datasets, which is due to easier training
nd less generalization error. These differences may bring some
nspiration to the design of neural architecture.
 e

116
.2.2. Architecture evaluation
mplementation details. In the evaluation phase, we stack an eval-
ation network with 20 repeated cells and 36 initial channels.
he evaluation network is trained on CIFAR-10 from scratch for
00 epochs. Additional enhancements are applied during the
valuation phase, including cutout regularization of length 16,
rop-path of probability 0.3, and auxiliary towers with weight
.4. We adopt a standard SGD optimizer with a weight decay
f 0.0003 and a momentum of 0.9. The initial learning rate is
et to 0.025, decreasing to 0 following a cosine scheduling. All
onfigurations remain the same as the settings of DARTS (Liu
t al., 2019) and PDARTS (Chen et al., 2019). All experiments are
un on a single Tesla V100.

esults analysis. As shown in Table 2, the average test error of
ARTS-AER is 0.1% lower than that of DARTS implemented by us
nd the standard deviation of DARTS-AER is 0.07 lower. Similarly,
ompared with our implemented PDARTS, the average test error
f PDARTS-AER is 0.07% lower and the standard deviation of
DARTS-AER is 0.02 lower. The evaluation results show that our
iscovered architectures outperform the architectures searched
y those algorithms without the architecture entropy regular-
zer. This demonstrates that our architecture entropy regularizer
romotes different differentiable NAS algorithms to obtain better
rchitectures. We achieve a highly competitive result (average
est error of 2.49%) on CIFAR-10. The lower standard deviation
lso shows that our architecture entropy regularizer can improve
he robustness of those differentiable NAS algorithms. Notably,
he regularizer introduces no extra significant cost of time and
emory.

.2.3. Architecture transferability evaluation
mplementation details. We evaluate the transferability of
earched architectures on ImageNet as well. The best architecture
e discovered on CIFAR-10 is trained. We build an evaluation
etwork with 14 cells and 48 initial channels. The network is
rained for 250 epochs with batch size 128. An SGD optimizer
ith a weight decay of 3 × 10−5, a momentum of 0.9, and an

nitial learning rate of 0.1 (annealed down to zero following a
osine schedule without restart) is used to optimize the network
arameters. Other training tricks are composed of label smooth-
ng, auxiliary tower, and learning rate warmup during training.
ther hyperparameters exactly follow PDARTS (Chen et al., 2019).
ll experiments are run on a single Tesla V100.

esults analysis. The results of architecture transferability evalu-
tion and comparison with other NAS algorithms are illustrated
n Table 3. Our discovered architecture achieves a 24.3% top-1
rror with 5.2M parameters and 587M FLOPs when transferred

K. Jing, L. Chen and J. Xu Neural Networks 158 (2023) 111–120

a
I
f
I
i

4
I
P
o
s
t
i
T

R
s
C
T
a
p

Table 2
Results of different algorithms on CIFAR-10. Our experimental results are the average test error obtained by running our algorithms
(including the search and evaluation phase) three times.

Algorithm Test error (%) Params Search cost Search method

Best Average (M) (GPU days)

DenseNet-BC (Huang, Liu, van der
Maaten, & Weinberger, 2017)a

3.46 – 25.6 – Manual

NASNet-A (Zoph et al., 2018) 2.65 – 3.3 1800 RL
AmoebaNet-B (Real, Aggarwal, Huang, &
Le, 2019)

2.55 – 2.8 3150 Evolution

ENAS (Pham et al., 2018) 2.89 – 4.6 0.5 RL
NAONet-WS (Luo, Tian, Qin, Chen, & Liu,
2018)

2.93 – 2.5 0.2 NAO

SNAS (Xie et al., 2019) 2.85 – 2.8 1.5 Gradient
GDAS (Dong & Yang, 2019) 2.93 – 3.4 0.21 Gradient
BayesNAS (Zhou, Yang, Wang, & Pan,
2019)

2.81 – 3.4 0.2 Gradient

PCDARTS (Xu et al., 2020) 2.57 – 3.6 0.1 Gradient
DropNAS (Hong et al., 2020) 2.26 2.58 ± 0.14 4.1 0.6 Gradient
NASP (Yao, Xu, Tu, & Zhu, 2020) 2.83 – 3.3 0.1 Gradient
SDARTS-ADV (Chen & Hsieh, 2020) 2.61 – 3.3 1.3 Gradient
PDARTS-ADV (Chen & Hsieh, 2020) 2.48 – 3.4 1.1 Gradient
SGAS (Li et al., 2020) 2.39 2.66 ± 0.24 3.7 0.25 gradient
FairDARTS (Chu, Zhou et al., 2020) – 2.54 ± 0.05 3.32 ± 0.46 0.42 Gradient

DARTS (Liu et al., 2019) 2.76 – 3.3 4 Gradient
DARTSb 2.63 2.76 ± 0.12 3.59 ± 0.35 4 Gradient
DARTS-AERb 2.60 2.66 ± 0.05 3.39 ± 0.14 4 Gradient

PDARTS (Chen et al., 2019) 2.50 – 3.4 0.3 Gradient
PDARTSb 2.54 2.60 ± 0.04 3.74 ± 0.19 0.3 Gradient
PDARTS-AERb 2.49 2.53 ± 0.02 3.64 ± 0.18 0.3 Gradient

adenotes training without cutout augmentation.
bdenotes that it is implemented by us.
Different from that other NAS algorithms (like DARTS, PDARTS, and PCDARTS) pick the best one, we report the mean and standard
deviation over 3 single runs. The search cost is converted so that it can be compared with the corresponding algorithm.
s

λ

a
λ

e
d
i
t
t

to ImageNet, which outperforms DARTS (Liu et al., 2019) and
PDARTS (Chen et al., 2019). Experimental results prove that our
architecture has better transferability.

4.3. Experiments on ImageNet

ImageNet. In Section 4.2.3, we use ILSVRC2012 (ImageNet) (Rus-
sakovsky et al., 2015) to evaluate the transferability of the archi-
tectures discovered on CIFAR-10. In this section, we search for
the optimal architecture on ILSVRC2012 directly. ILSVRC2012 is
a subset of ImageNet which contains 1000 object categories and
1.28M training and 50K validation images. We apply the original
dataset split setting where the input image size is 224 × 224 for
rchitecture evaluation. For architecture search, we use
mageNet16-120 dataset (Chrabaszcz et al., 2017), which is built
rom the down-sampled variant of ImageNet (ImageNet16 × 16).
mageNet16-120 contains 151.7K training images, 3K validation
mages, and 3K test images with 120 classes.

.3.1. Architecture search
mplementation details. Strictly following the configuration of
DARTS (Chen et al., 2019), we use a similar configuration to the
ne used on CIFAR10, except for some minor changes. For the
earch stage 1, 2, and 3, we respectively set the number of cells
o 5, 8, 11, the dropout rate to 0.0, 0.3, 0.6, and the number of
nitial channels to 16, 28, 40. All experiments are run on a single
esla V100.

esults analysis. Our discovered architectures on ImageNet are
hown in Fig. 5. Compared with the discovered architecture on
IFAR-10, the discovered architecture has more deep connections.
his is because the complexity of ImageNet makes those shallow
rchitectures more difficult to fit, forcing the algorithm to ex-
lore deeper architectures. Meanwhile, the larger dataset makes
117
the deep network easier to train and can reduce generalization
error, which also makes the algorithm explore deeper architec-
tures. Moreover, the proportion of 3 × 3 average pooling in the
reduction cell remains higher than other architectures.

4.3.2. Architecture evaluation
Implementation details. We evaluate the discovered architecture
on ImageNet with the same configure in Section 4.2.3. All exper-
iments are run on a single Tesla V100.

Results analysis. As shown in Table 3, our discovered architecture
on ImageNet achieves a 24.0% top-1 error with 5.1M parameters
and 578M FLOPs, which outperforms all the other NAS algorithms
mentioned. Experimental results demonstrate our algorithm can
perform well on different datasets.

4.4. Ablation studies

4.4.1. Ablation study for architecture entropy regularizer
We conduct an ablation study on CIFAR-10. We assemble the

architecture entropy regularizer for DARTS, and all the settings
are the same as in Sections 4.2.1 and 4.2.2. We conduct exper-
iments in four cases: λ(t) = 0 that is equivalent to DARTS,
λ(t) = −0.2, λ(t) = 0.2, and λ(t) from −0.2 to 0.2. We run the
earch and evaluation ten times for each case.
As we can see in Fig. 3, the rank correlation is stronger when

(t) = 0.2 and λ(t) varies from −0.2 to 0.2 than when λ(t) = 0
nd λ(t) = −0.2. Simultaneously, the average error is lower when
(t) varies from −0.2 to 0.2. This shows that our architecture
ntropy regularizer with a positive coefficient can alleviate the
iscretization discrepancy problem and the method with regular-
zer coefficient scheduling outperforms others. Fig. 2 illuminates
hat for the last case, the curve in the early stage tends to the
rend of the second case and in the later stage tends to the trend

K. Jing, L. Chen and J. Xu Neural Networks 158 (2023) 111–120

o

Table 3
Results of different algorithms on ImageNet.

Algorithm Test error (%) Params +× Search cost Search method

Top-1 Top-5 (M) (M) (GPU days)

MobileNet-V2 (Sandler, Howard, Zhu,
Zhmoginov, & Chen, 2018)

25.3 – 6.9 585 – Manual

ShuffleNet-V2 (Ma, Zhang, Zheng, & Sun,
2018)

25.1 – 7.4 591 – Manual

EfficientNet-B0 (Tan & Le, 2019)c 23.7 6.8 5.3 390 – Manual

NASNet-A (Zoph et al., 2018) 26.0 8.4 5.3 564 1800 RL
AmoebaNet-C (Real et al., 2019)b 24.3 7.6 6.4 570 3150 Evolution
PNAS (Liu, Zoph, Neumann, Shlens, Hua,
Li et al., 2018)

25.8 8.1 5.1 588 ∼225 SMBO

MnasNet-92 (Tan et al., 2019)bc 25.2 8.0 4.4 388 – RL

DARTS (Liu et al., 2019) 26.7 8.7 4.7 574 4 Gradient
FBNet-C (Wu et al., 2019)ab 25.1 7.7 5.5 375 9 Gradient
ProxylessNAS (Cai et al., 2019)ab 24.9 7.5 7.1 465 8.3 Gradient
SNAS (Xie et al., 2019) 27.3 9.2 4.3 522 1.5 Gradient
GDAS (Dong & Yang, 2019) 26.0 8.5 5.3 581 0.21 Gradient
NASP (Yao et al., 2020) 27.2 9.1 4.6 – 0.1 Gradient
BayesNAS (Zhou et al., 2019) 26.5 8.9 3.9 – 0.2 Gradient
PCDARTS (Xu et al., 2020) 25.1 7.8 5.3 586 0.1 gradient
Single-Path NAS (Stamoulis et al.,
2019)ab

25.0 7.8 – – 0.16 Gradient

PDARTS-ADV (Chen & Hsieh, 2020) 24.2 7.2 – – 1.1 Gradient
FairDARTS-B (Chu, Zhou et al., 2020)b 24.9 7.5 4.8 541 0.4 Gradient
FairDARTS-D (Chu, Zhou et al., 2020)ab 24.4 7.4 4.3 440 3 Gradient

PDARTS (Chen et al., 2019) 24.4 7.4 4.9 557 0.3 gradient
PDARTS-AERd 24.3 7.2 5.2 587 0.3 Gradient

PDARTSa (Chen et al., 2019) 24.1 7.3 5.4 597 2.0 gradient
PDARTS-AERad 24.0 7.2 5.1 578 2.0 Gradient

adenotes directly searching on ImageNet.
bdenotes using a different search space from ours.
cdenotes training with more tricks, like AutoAugment, etc.
ddenotes that it is implemented by us.
The search cost is converted so that it can be compared with the corresponding algorithm.
Fig. 5. The discovered architecture by PDARTS-AER on ImageNet.
f the third case, which proves that when λ(t) varies from −0.2
to 0.2, the algorithm integrates the advantages of the second
and third cases, i.e., λ(t) = −0.2 and λ(t) = 0.2. In brief, our
architecture entropy regularizer achieves two different effects by
the different setups of its coefficient, and the regularizer coeffi-
cient scheduling promotes the combination of the two effects to
perform better.

4.4.2. Ablation study for regularizer coefficient scheduling
To find a scheduling way for the regularizer coefficient, we

follow the settings in Section 4.4.1 to conduct an ablation study
on CIFAR-10. Using a cosine scheduling as a priori method, we ex-
plore only the regularizer coefficient pairs (λneg , λpos) of starting
and ending points. We explore four groups, including (0.0, 0.0),
(−0.2, 0.2), (−0.5, 0.5), (−1.0, 1.0). Meanwhile, the other two
cases are also considered for comparison, including λ(t) = −0.2
and λ(t) = 0.2. We run the search and evaluation three times for
each case.

Fig. 6(a) shows that the change process of architecture entropy
for all six cases during the search phase. Compared with DARTS,
118
the architecture entropy decreases more slowly in the early stage
and faster in the late stage when (λneg , λpos) = (−0.2, 0.2). As
shown in Fig. 6(b), when (λneg , λpos) = (−0.2, 0.2), the discovered
architectures achieve 97.34% ± 0.05 average test accuracy and
significantly outperform others, which proves that our algorithm
has better stability and generalization. As we can see in Fig. 6,
with |λneg | = |λpos| increasing, the curve of architecture en-
tropy is more extreme and the algorithm tends to degenerate
into a worse algorithm whose architecture parameters cannot be
learned effectively before the last epoch, making our algorithm
more similar to random search.

5. Discussion

Some existing solutions (e.g., early stopping Chu, Zhou et al.,
2020; Liang et al., 2019, restricting the number of skip con-
nections Chen et al., 2019; Chu, Zhou et al., 2020; Liang et al.,
2019, etc.) cannot help architecture parameters of differentiable
NAS escape from local optimization. Our research shows that the

K. Jing, L. Chen and J. Xu Neural Networks 158 (2023) 111–120
Fig. 6. Ablation study for different scheduling ways of the architecture entropy regularizer coefficient. We explore the case of cosine scheduling with the equal
absolute values of λneg and λopt . We run the search and evaluation three times on CIFAR-10 for each case. We report the changes in architecture entropies of them
during the search phase and the average and standard deviation of the test accuracies of their discovered architectures. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
D

F

G

G

H

H

K

core of improving differentiable NAS algorithms is how to guide
architecture parameters to be learned correctly in the dilemma.
In particular, FairNAS (Chu et al., 2021) and DAAS (Tian, Liu, Xie,
Jiao, & Ye, 2021) are two extremes of the dilemma and push the
search process towards discretized search or not. But our work
can provide a smooth transition between the two extremes. We
expect that the main improving direction of differentiable NAS
algorithms is to explore how to schedule the coefficients of the
architecture entropy regularizer to guide architecture parame-
ters to be learned better. It has a promising prospect to find a
better way of learning architecture parameters to the optimal,
e.g. a heuristic regularizer or an advanced update policy for
architecture parameters.

Furthermore, except for the differentiable algorithm itself,
there are two major issues in differentiable NAS. (1) The existing
differentiable search space is outdated. We cannot expect to
observe significant accuracy gain under the current experimental
settings in the existing differentiable NAS works. Some works
criticize that even the random search with some heuristic tricks
(such as setting a fixed number of particular operators or limiting
the depth of the cell) can derive competitive performances. In
other words, it is hard to judge whether the improvement comes
from the search algorithm itself or some random factors. (2) The
existing evaluation strategy is unreasonable. Since differentiable
NAS usually requires differentiable performance metrics, most of
the existing differentiable NAS work use the cross-entropy loss
on the validation set for architecture evaluation. However, the
cross-entropy loss is a dataset-related metric. This can lead to
inconsistent architecture evaluation biases on different datasets.
Therefore, the search space with larger variance, more reasonable
evaluation strategy, and fairer NAS benchmark are the crucial and
urgent demands for NAS, especially differentiable NAS, which can
bring vitality to the NAS community.

6. Conclusion

In this work, we propose an architecture entropy as a reg-
ularizer for the architecture parameters of differentiable NAS
algorithms. By the regularizer coefficient scheduling, we success-
fully stop DARTS from the dilemma that the existing solutions to
the problems of the Matthew effect and discretization discrep-
ancy are inconsistent. We report the best and average error of
the architectures we discover, and achieve competitive results,
i.e., higher accuracy and better robustness, on CIFAR-10 and Im-
ageNet. Experimental results demonstrate that our architecture
entropy regularizer significantly improves different differentiable
NAS algorithms on different datasets and different search spaces.
119
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

The authors do not have permission to share data.

References

Cai, H., Zhu, L., & Han, S. (2019). ProxylessNAS: Direct neural architecture search
on target task and hardware. In Proc. ICLR’19.

Chen, X., & Hsieh, C. -J. (2020). Stabilizing differentiable architecture search via
perturbation-based regularization. In Proc. ICML’20 (pp. 1554–1565).

Chen, X., Xie, L., Wu, J., & Tian, Q. (2019). Progressive differentiable architecture
search: Bridging the depth gap between search and evaluation. In Proc.
ICCV’19 (pp. 1294–1303).

Chrabaszcz, P., Loshchilov, I., & Hutter, F. (2017). A downsampled variant of
ImageNet as an alternative to the CIFAR datasets. CoRR arXiv:1707.08819.

Chu, X., Zhang, B., & Li, X. (2020). Noisy differentiable architecture search. CoRR
arXiv:2005.03566.

Chu, X., Zhang, B., & Xu, R. (2021). FairNAS: Rethinking evaluation fair-
ness of weight sharing neural architecture search. In Proc. ICCV’21 (pp.
12219–12228).

Chu, X., Zhou, T., Zhang, B., & Li, J. (2020). Fair DARTS: Eliminating un-
fair advantages in differentiable architecture search. In Proc. ECCV’20 (pp.
465–480).

Deng, J., Dong, W., Socher, R., Li, L. -J., Li, K., & Li, F. -F. (2009). ImageNet: A
large-scale hierarchical image database. In Proc. CVPR’09 (pp. 248–255).

Dong, X., & Yang, Y. (2019). Searching for a robust neural architecture in four
GPU hours. In Proc. CVPR’19 (pp. 1761–1770).

ong, X., & Yang, Y. (2020). NAS-Bench-201: Extending the scope of reproducible
neural architecture search. In Proc. ICLR 2020.

erianc, M., Fan, H., & Rodrigues, M. (2020). VINNAS: Variational inference-based
neural network architecture search. CoRR arXiv:2007.06103.

ao, Y., Bai, H., Jie, Z., Ma, J., Jia, K., & Liu, W. (2020). MTL-NAS: Task-agnostic
neural architecture search towards general-purpose multi-task learning. In
Proc. CVPR 2020 (pp. 11540–11549). IEEE.

reen, S., Vineyard, C. M., Helinski, R., & Koç, Ç. K. (2020). RAPDARTS: Resource-
aware progressive differentiable architecture search. In Proc. IJCNN’20 (pp.
1–7).

ong, W., Li, G., Zhang, W., Tang, R., Wang, Y., Li, Z., et al. (2020). DropNAS:
Grouped operation dropout for differentiable architecture search. In Proc.
IJCAI’20 (pp. 2326–2332).

uang, G., Liu, Z., van der Maaten, L., & Weinberger, K. Q. (2017). Densely
connected convolutional networks. In Proc. CVPR’17 (pp. 2261–2269).

rizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny
images: Tech. rep., Citeseer.

http://refhub.elsevier.com/S0893-6080(22)00456-7/sb1
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb1
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb1
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb2
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb2
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb2
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb3
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb3
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb3
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb3
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb3
http://arxiv.org/abs/1707.08819
http://arxiv.org/abs/2005.03566
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb6
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb6
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb6
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb6
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb6
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb7
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb7
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb7
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb7
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb7
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb8
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb8
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb8
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb9
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb9
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb9
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb10
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb10
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb10
http://arxiv.org/abs/2007.06103
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb12
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb12
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb12
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb12
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb12
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb13
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb13
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb13
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb13
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb13
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb14
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb14
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb14
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb14
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb14
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb15
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb15
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb15
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb16
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb16
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb16

K. Jing, L. Chen and J. Xu Neural Networks 158 (2023) 111–120

L

L

L

L

P

R

R

R

S

S

T

T

T

W

X

X

Y

Y

Z

Z

Z

Z

Z

Z

i, G., Qian, G., Delgadillo, I. C., Müller, M., Thabet, A. K., & Ghanem, B.
(2020). SGAS: Sequential greedy architecture search. In Proc. CVPR’20 (pp.
1617–1627).

i, G., Zhang, X., Wang, Z., Li, Z., & Zhang, T. (2019). StacNAS: Towards stable and
consistent optimization for differentiable neural architecture search. CoRR
arXiv:1909.11926.

iang, H., Zhang, S., Sun, J., He, X., Huang, W., Zhuang, K., et al. (2019). DARTS+:
Improved differentiable architecture search with early stopping. CoRR arXiv:
1909.06035.

iu, H., Simonyan, K., Vinyals, O., Fernando, C., & Kavukcuoglu, K. (2018).
Hierarchical representations for efficient architecture search. In Proc. ICLR’18.

Liu, H., Simonyan, K., & Yang, Y. (2019). DARTS: Differentiable architecture
search. In Proc. ICLR’19.

Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L. -J., et al. (2018).
Progressive neural architecture search. In Proc. ECCV’18 (pp. 19–35).

Luo, R., Tian, F., Qin, T., Chen, E., & Liu, T. -Y. (2018). Neural architecture
optimization. In Proc. NeurIPS’18 (pp. 7827–7838).

Ma, N., Zhang, X., Zheng, H. -T., & Sun, J. (2018). ShuffleNet V2: Practical
guidelines for efficient CNN architecture design. In Proc. ECCV’18 (pp.
122–138).

ham, H., Guan, M. Y., Zoph, B., Le, Q. V., & Dean, J. (2018). Efficient neural
architecture search via parameter sharing. In Proc. ICML’18 (pp. 4092–4101).

eal, E., Aggarwal, A., Huang, Y., & Le, Q. V. (2019). Regularized evolution for
image classifier architecture search. In Proc. AAAI’19 (pp. 4780–4789).

eal, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y. L., Tan, J., et
al. (2017). Large-scale evolution of image classifiers. In Proc. ICML’17
(pp. 2902–2911).

ussakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015).
ImageNet large scale visual recognition challenge. International Journal of
Computer Vision, 115(3), 211–252.

andler, M., Howard, A. G., Zhu, M., Zhmoginov, A., & Chen, L. -C. (2018).
MobileNetV2: Inverted residuals and linear bottlenecks. In Proc. CVPR’18 (pp.
4510–4520).

tamoulis, D., Ding, R., Wang, D., Lymberopoulos, D., Priyantha, B., Liu, J., et al.
(2019). Single-path NAS: Designing hardware-efficient ConvNets in less than
4 hours. In Proc. ECML PKDD’19 (pp. 481–497).
120
an, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., et al. (2019).
MnasNet: Platform-aware neural architecture search for mobile. In Proc.
CVPR’19 (pp. 2820–2828).

an, M., & Le, Q. V. (2019). EfficientNet: Rethinking model scaling for
convolutional neural networks. In Proc. ICML’19 (pp. 6105–6114).

ian, Y., Liu, C., Xie, L., Jiao, J., & Ye, Q. (2021). Discretization-aware architecture
search. Pattern Recognition, 120, Article 108186.

u, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., et al. (2019). FB-
Net: Hardware-aware efficient ConvNet design via differentiable neural
architecture search. In Proc. CVPR’19 (pp. 10734–10742).

ie, S., Zheng, H., Liu, C., & Lin, L. (2019). SNAS: Stochastic neural architecture
search. In Proc. ICLR’19.

u, Y., Xie, L., Zhang, X., Chen, X., Qi, G. -J., Tian, Q., et al. (2020). PC-DARTS:
Partial channel connections for memory-efficient architecture search. In Proc.
ICLR’20.

ao, Q., Xu, J., Tu, W. -W., & Zhu, Z. (2020). Efficient neural architecture search
via proximal iterations. In Proc. AAAI’20 (pp. 6664–6671).

u, K., Sciuto, C., Jaggi, M., Musat, C., & Salzmann, M. (2020). Evaluating the
search phase of neural architecture search. In Proc. ICLR’20.

ela, A., Elsken, T., Saikia, T., Marrakchi, Y., Brox, T., & Hutter, F. (2020).
Understanding and robustifying differentiable architecture search. In Proc.
ICLR 2020.

hang, L. L., Yang, Y., Jiang, Y., Zhu, W., & Liu, Y. (2020). Fast hardware-aware
neural architecture search. In Proc. CVPR’20 workshops (pp. 2959–2967).

heng, X., Ji, R., Wang, Q., Ye, Q., Li, Z., Tian, Y., et al. (2020). Rethinking
performance estimation in neural architecture search. In Proc. CVPR’20 (pp.
11353–11362).

hou, H., Yang, M., Wang, J., & Pan, W. (2019). BayesNAS: A Bayesian approach
for neural architecture search. In Proc. ICML’19 (pp. 7603–7613).

oph, B., & Le, Q. V. (2017). Neural architecture search with reinforcement
learning. In Proc. ICLR’17.

oph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2018). Learning transfer-
able architectures for scalable image recognition. In Proc. CVPR’18 (pp.
8697–8710).

http://refhub.elsevier.com/S0893-6080(22)00456-7/sb17
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb17
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb17
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb17
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb17
http://arxiv.org/abs/1909.11926
http://arxiv.org/abs/1909.06035
http://arxiv.org/abs/1909.06035
http://arxiv.org/abs/1909.06035
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb20
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb20
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb20
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb21
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb21
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb21
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb22
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb22
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb22
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb23
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb23
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb23
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb24
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb24
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb24
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb24
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb24
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb25
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb25
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb25
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb26
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb26
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb26
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb27
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb27
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb27
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb27
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb27
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb28
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb28
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb28
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb28
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb28
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb29
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb29
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb29
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb29
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb29
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb30
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb30
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb30
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb30
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb30
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb31
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb31
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb31
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb31
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb31
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb32
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb32
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb32
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb33
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb33
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb33
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb34
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb34
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb34
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb34
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb34
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb35
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb35
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb35
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb36
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb36
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb36
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb36
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb36
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb37
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb37
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb37
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb38
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb38
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb38
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb39
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb39
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb39
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb39
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb39
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb40
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb40
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb40
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb41
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb41
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb41
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb41
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb41
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb42
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb42
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb42
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb43
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb43
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb43
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb44
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb44
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb44
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb44
http://refhub.elsevier.com/S0893-6080(22)00456-7/sb44

	An architecture entropy regularizer for differentiable neural architecture search
	Introduction
	Related Work
	Escaping from Dilemma
	Differentiable Architecture Search
	Dilemma of Differentiable Architecture Search
	Architecture Entropy Regularizer
	Two Effects
	Regularizer Coefficient Scheduling

	Search Algorithms

	Experiments
	Experiments on NAS-Bench-201
	Experiments on CIFAR-10
	Architecture Search
	Architecture Evaluation
	Architecture Transferability Evaluation

	Experiments on ImageNet
	Architecture Search
	Architecture Evaluation

	Ablation Studies
	Ablation Study for Architecture Entropy Regularizer
	Ablation Study for Regularizer Coefficient Scheduling

	Discussion
	Conclusion
	Declaration of Competing Interest
	Data availability
	References

